论文阅读:A Generalization of Transformer Networks to Graphs

论文阅读:A Generalization of Transformer Networks to Graphs

  • 论文地址
  • 1 摘要
  • 2 贡献
  • Graph Transformer
    • On Graph Sparsity(图稀疏)
    • On Positional Encodings(位置编码)
    • 3 Graph Transformer Architecture(架构)
      • 模型框架
      • input(输入)
    • Graph Transformer Layer
      • Graph Transformer Layer with edge features(带边特征)
      • 基于任务的 MLP 层
  • 4 实验

论文地址

论文:https://arxiv.org/pdf/2012.09699.pdf
代码:https://github.com/graphdeeplearning/graphtransformer

1 摘要

作者提出了一种适用于任何图的GraphTransformer。原始的transformer在基于单词的全连接图上用于NLP,它有如下缺点:

  1. 这种结构不能很好利用图的连通归纳偏置(graph connectivity inductive bias)
  2. 当图的拓扑结构很重要且尚未编码到节点特征时,表现很差

作者提出的GraphTransformer,有4个优势:

  1. 注意力机制是图中每个节点的邻域连通性的函数
  2. positional encoding用拉普拉斯特征向量表示
  3. Batch Normalization代替Layer Normalization,优点:训练更快,泛化性能更好
  4. 该架构扩展到边特征表示,这对于某些任务可能至关重要,例如化学(键类型)或链接预测(知识图谱中的实体关系)

2 贡献

  1. 提出了一种将 transformer 网络推广到任意结构的同构图,即 Graph Transformer,以及具有边缘特征的 GraphTransformer 的扩展版本,允许使用显式域信息作为边缘特征。
  2. 方法包括一种使用拉普拉斯特征向量为图数据集融合节点位置特征的优雅方法。与文献的比较表明,拉普拉斯特征向量比任何现有的方法都更适合编码任意同构图的节点位置信息
  3. 实验表明,所提出的模型超过了baseline的各向同性和各向异性 GNN

Graph Transformer

On Graph Sparsity(图稀疏)

在NLP的transformer中,用全连接图去处理一个句的原因:

  1. 很难在句子中的单词之间找到有意义的稀疏交互或联系。例如:句子中的单词对另一个单词的依赖性可能因上下文、用户视角而异
  2. NLP的transformer的nodes数量比较少(几十个,几百个),便于计算。

对于实际的图形数据集,图形可能有任意的连接结构,nodes的数量高达数百万或数十亿,使得不可能为此类数据集提供完全连接的图形,因此需要Graph Transformer来让nodes处理邻居信息。

On Positional Encodings(位置编码)

在 NLP 中,基于 transformer 的模型为每个单词提供位置编码。确保每个单词的唯一表示并确保最终保留距离信息

对于图形,唯一节点位置的设计具有挑战性,因此大多数在图数据集上训练的 GNN 学习的是不随节点位置变化的结构化节点信息,这就是为什么GAT是局部attention,而不是全局attention。

现在的目标是学习结构和位置的特征,Dwivedi et al. (2020)利用现有的图结构预先计算拉普拉斯特征向量,并将它们作为节点的位置信息。

  • 拉普拉斯 PE 能更好地帮助编码距离感知信息(即,附近的节点具有相似的位置特征,而较远的节点具有不同的位置特征)

因此使用拉普拉斯特征向量作为 Graph Transformer 中的 PE。特征向量通过图拉普拉斯矩阵的分解来定义:
Δ = I − D − 1 / 2 A D − 1 / 2 = U T Λ U , ( 1 ) \Delta=\mathrm{I}-D^{-1/2}AD^{-1/2}=U^T\Lambda U,\quad(1) Δ=ID1/2AD1/2=UTΛU,(1)

  • A A A n × n n\times n n×n邻接矩阵, D D D是度矩阵
  • Λ \Lambda Λ U U U分别对应特征值和特征向量
  • 使用节点的 k个最小的非平凡特征向量作为其位置编码,对于节点 i i i,用 λ i \lambda_{i} λi表示

3 Graph Transformer Architecture(架构)

模型框架

在这里插入图片描述

input(输入)

首先准备要输入Graph Transformer Layer的input node 和 edge embeddings。

在图 G \mathcal{G} G中,对于任意一个节点 i i i的节点特征 α i ∈ R d n × 1 \alpha_{i} \in \mathbb{R}^{d_{n}\times1} αiRdn×1以及节点 i i i和节点 j j j之间的边特征 β i j ∈ R d e × 1 \beta_{ij}\in\mathbb{R}^{d_{e}\times1} βijRde×1 α i \alpha_{i} αi β i j \beta_{ij} βij通过一个线性映射,从而嵌入到 d d d维的隐藏特征(hidden features) h i 0 h_i^0 hi0 e i j 0 e_{ij}^0 eij0中,公式如下:
h ^ i 0 = A 0 α i + a 0 ; e i j 0 = B 0 β i j + b 0 , ( 2 ) \hat{h}_i^0=A^0\alpha_i+a^0 ; e_{ij}^0=B^0\beta_{ij}+b^0,\quad(2) h^i0=A0αi+a0;eij0=B0βij+b0,(2)

  • 其中 A 0 ∈ R d × d n , B 0 ∈ R d × d e A^0\in\mathbb{R}^{d\times d_n},B^0\in\mathbb{R}^{d\times d_e} A0Rd×dn,B0Rd×de,以 A 0 A^0 A0为例,其每一列是每个节点的节点特征(总共 d n d_n dn个结点),维度为 d d d,而 α i \alpha_{i} αi一个其他元素都为0,对应节点位置的元素为1的向量

  • a 0 , b 0 ∈ R d a^0,b^0\in\mathbb{R}^d a0,b0Rd是线性映射层的参数

然后通过线性映射嵌入维度为 k k k的预计算节点位置编码并将其添加到节点特征 h ^ i 0 \hat{h}_i^0 h^i0中。
λ i 0 = C 0 λ i + c 0 ; h i 0 = h ^ i 0 + λ i 0 , ( 3 ) \lambda_i^0=C^0\lambda_i+c^0 ; h_i^0=\hat{h}_i^0+\lambda_i^0,\quad(3) λi0=C0λi+c0;hi0=h^i0+λi0,(3)

  • 其中 C 0 ∈ R d × k , c 0 ∈ R d C^0\in\mathbb{R}^{d\times k},c^0\in\mathbb{R}^d C0Rd×kc0Rd,其作用是将位置编码转化为维度为 d d d的向量

Graph Transformer Layer

现在定义第 l l l层的节点更新方程:
h ^ i ℓ + 1 = O h ℓ ∣ ∣ k = 1 H ( ∑ j ∈ N i w i j k , ℓ V k , ℓ h j ℓ ) , ( 4 ) \hat{h}_{i}^{\ell+1}=O_{h}^{\ell}\mathcal{\left|\right|}_{k=1}^{H}\Big(\sum_{j\in\mathcal{N}_{i}}w_{ij}^{k,\ell}V^{k,\ell}h_{j}^{\ell}\Big),\quad(4) h^i+1=Ohk=1H(jNiwijk,Vk,hj),(4)
w h e r e , w i j k , ℓ = s o f t m a x j ( Q k , ℓ h i ℓ ⋅ K k , ℓ h j ℓ d k ) , ( 5 ) \mathrm{where,~}w_{ij}^{k,\ell}=\mathrm{softmax}_{j}\Big(\frac{Q^{k,\ell}h_{i}^{\ell} \cdot K^{k,\ell}h_{j}^{\ell}}{\sqrt{d_{k}}}\Big),\quad(5) where, wijk,=softmaxj(dk Qk,hiKk,hj),(5)

  • Q k , ℓ , K k , ℓ , V k , ℓ ∈ R d k × d , O h ℓ ∈ R d × d Q^{k,\ell},K^{k,\ell},V^{k,\ell}\in\mathbb{R}^{d_{k}\times d},O_{h}^{\ell}\in\mathbb{R}^{d\times d} Qk,,Kk,,Vk,Rdk×d,OhRd×d
  • k = 1 k=1 k=1 H H H代表注意头的数量
  • ∣ ∣ \mathcal{\left|\right|} 表示串联(concatenation)

这里详细讲一下式子(5), Q k , ℓ h i ℓ Q^{k,\ell}h_{i}^{\ell} Qk,hi相当于 h i ℓ h_{i}^{\ell} hi的查询向量, K k , ℓ h j ℓ K^{k,\ell}h_{j}^{\ell} Kk,hj h j ℓ h_{j}^{\ell} hj的键向量(相当于查询的答案)

  • 比如,查询向量在问:“我前面有形容词吗”,键向量回答:“有的”。假设二者向量点积值越大,则说明了它们越匹配,则说明越相关
  • 除以 d k \sqrt{d_{k}} dk 是为了数据的稳定性

接着将结果 h ^ i ℓ + 1 \hat{h}_{i}^{\ell+1} h^i+1按照框架图所示依次经过残差连接和LN、Feed Forward Network (FFN)、残差连接和LN,公式如下:
h ^ ^ i ℓ + 1 = Norm ( h i ℓ + h ^ i ℓ + 1 ) , ( 6 ) h ^ ^ ^ ℓ + 1 = W 2 ℓ ReLU ( W 1 ℓ h ^ ^ i ℓ + 1 ) , ( 7 ) h i ℓ + 1 = Norm ( h ^ ^ i ℓ + 1 + h ^ ^ ^ i ℓ + 1 ) , ( 8 ) \hat{\hat{h}}_i^{\ell+1}\quad=\quad\text{Norm}\Big(h_i^\ell+\hat{h}_i^{\ell+1}\Big),\quad(6) \newline \begin{array}{lcl}\hat{\hat{\hat{h}}}^{\ell+1}&=&W_2^\ell\text{ReLU}(W_1^\ell\hat{\hat{h}}_i^{\ell+1}),&(7)\end{array} \newline \begin{array}{rcl}h_i^{\ell+1}&=&\text{Norm}\Big(\hat{\hat{h}}_i^{\ell+1}+\hat{\hat{\hat{h}}}_i^{\ell+1}\Big),&\quad(8)\end{array} h^^i+1=Norm(hi+h^i+1),(6)h^^^+1=W2ReLU(W1h^^i+1),(7)hi+1=Norm(h^^i+1+h^^^i+1),(8)

  • W 1 ℓ , ∈ R 2 d × d , W 2 ℓ , ∈ R d × 2 d , h ^ ^ i ℓ + 1 , h ^ ^ ^ i ℓ + 1 W_{1}^{\ell},\in \mathbb{R}^{2d\times d}, W_{2}^{\ell},\in \mathbb{R}^{d\times2d}, \hat{\hat{h}}_{i}^{\ell+1}, \hat{\hat{\hat{h}}}_{i}^{\ell+1} W1,R2d×d,W2,Rd×2d,h^^i+1,h^^^i+1 都是中间变量
  • Norm可以是LayerNorm或者BatchNorm

Graph Transformer Layer with edge features(带边特征)

接下来介绍的是上图第二个模型,根据公式(5),将此分数视为边<i,j>的隐式信息,紧接着使用公式(12)为边<i,j>注入可用的边信息,如下:
h ^ i ℓ + 1 = O h ℓ ∣ ∣ k = 1 H ( ∑ j ∈ N i w i j k , ℓ V k , ℓ h j ℓ ) , (9) e ^ i j ℓ + 1 = O e ℓ ∣ ∣ k = 1 H ( w ^ i j k , ℓ ) , w h e r e , (10) w i j k , ℓ = s o f t m a x j ( w ^ i j k , ℓ ) , (11) w ^ i j k , ℓ = ( Q k , ℓ h i ℓ ⋅ K k , ℓ h j ℓ d k ) ⋅ E k , ℓ e i j ℓ , (12) \begin{aligned}&\hat{h}_{i}^{\ell+1}&&=\quad O_{h}^{\ell}\mathcal{\left|\right|}_{k=1}^{H}\Big(\sum_{j\in\mathcal{N}_{i}}w_{ij}^{k,\ell}V^{k,\ell}h_{j}^{\ell}\Big),&&\text{(9)}\\&\hat{e}_{ij}^{\ell+1}&&=\quad O_{e}^{\ell}\mathcal{\left|\right|}_{k=1}^{H}\Big(\hat{w}_{ij}^{k,\ell}\Big), \mathrm{where},&&\text{(10)}\\&w_{ij}^{k,\ell}&&=\quad\mathrm{softmax}_{j}(\hat{w}_{ij}^{k,\ell}),&&\text{(11)}\\&\hat{w}_{ij}^{k,\ell}&&=\quad\left(\frac{Q^{k,\ell}h_{i}^{\ell}\cdot K^{k,\ell}h_{j}^{\ell}}{\sqrt{d_{k}}}\right) \cdot E^{k,\ell}e_{ij}^{\ell},&&\text{(12)}\end{aligned} h^i+1e^ij+1wijk,w^ijk,=Ohk=1H(jNiwijk,Vk,hj),=Oek=1H(w^ijk,),where,=softmaxj(w^ijk,),=(dk Qk,hiKk,hj)Ek,eij,(9)(10)(11)(12)

  • Q k , ℓ , K k , ℓ , V k , ℓ , E k , ℓ ∈ R d k × d , O h ℓ , O e ℓ ∈ R d × d Q^{k,\ell},K^{k,\ell},V^{k,\ell},E^{k,\ell} \in \mathbb{R}^{d_{k}\times d}, O_{h}^{\ell},O_{e}^{\ell} \in \mathbb{R}^{d\times d} Qk,,Kk,,Vk,,Ek,Rdk×d,Oh,OeRd×d
  • 这里的公式,矩阵运算过程中总感觉维度不对应,后期再看这个问题

紧接着,经历相同的过程,如下:
对于节点:
h ^ ^ i ℓ + 1 = N o r m ( h i ℓ + h ^ i ℓ + 1 ) , (13) h ^ ^ ^ i ℓ + 1 = W h , 2 ℓ R e L U ( W h , 1 ℓ h ^ ^ i ℓ + 1 ) , (14) h i ℓ + 1 = N o r m ( h ^ ^ i ℓ + 1 + h ^ ^ ^ i ℓ + 1 ) , (15) \begin{aligned} &\hat{\hat{h}}_{i}^{\ell+1}&& =\quad\mathrm{Norm}\Big(h_{i}^{\ell}+\hat{h}_{i}^{\ell+1}\Big), &&&& \text{(13)} \\ &\hat{\hat{\hat{h}}}_{i}^{\ell+1}&& =\quad W_{h,2}^{\ell}\mathrm{ReLU}(W_{h,1}^{\ell}\hat{\hat{h}}_{i}^{\ell+1}), &&&& \text{(14)} \\ &h_{i}^{\ell+1}&& =\quad\mathrm{Norm}\Big(\hat{\hat{h}}_{i}^{\ell+1}+\hat{\hat{\hat{h}}}_{i}^{\ell+1}\Big), &&&& \text{(15)} \end{aligned} h^^i+1h^^^i+1hi+1=Norm(hi+h^i+1),=Wh,2ReLU(Wh,1h^^i+1),=Norm(h^^i+1+h^^^i+1),(13)(14)(15)

  • W h , 1 ℓ , ∈ R 2 d × d , W h , 2 ℓ , ∈ R d × 2 d W_{h,1}^{\ell},\in \mathbb{R}^{2d\times d}, W_{h,2}^{\ell},\in \mathbb{R}^{d\times2d} Wh,1,R2d×d,Wh,2,Rd×2d

对于边:
e ^ ^ i j ℓ + 1 = N o r m ( e i j ℓ + e ^ i j ℓ + 1 ) , ( 16 ) e ^ ^ ^ i j ℓ + 1 = W e , 2 ℓ R e L U ( W e , 1 ℓ e ^ ^ i j ℓ + 1 ) , ( 17 ) e i j ℓ + 1 = N o r m ( e ^ ^ i j ℓ + 1 + e ^ ^ ^ i j ℓ + 1 ) , ( 18 ) \hat{\hat{e}}_{ij}^{\ell+1}=\quad\mathrm{Norm}\Big(e_{ij}^{\ell}+\hat{e}_{ij}^{\ell+1}\Big),(16)\\\hat{\hat{\hat{e}}}_{ij}^{\ell+1}=\quad W_{e,2}^{\ell}\mathrm{ReLU}(W_{e,1}^{\ell}\hat{\hat{e}}_{ij}^{\ell+1}),(17)\\e_{ij}^{\ell+1}=\quad\mathrm{Norm}\Big(\hat{\hat{e}}_{ij}^{\ell+1}+\hat{\hat{\hat{e}}}_{ij}^{\ell+1}\Big),(18) e^^ij+1=Norm(eij+e^ij+1),(16)e^^^ij+1=We,2ReLU(We,1e^^ij+1),(17)eij+1=Norm(e^^ij+1+e^^^ij+1),(18)

  • W e , 1 ℓ , ∈ R 2 d × d , W e , 2 ℓ , ∈ R d × 2 d W_{e,1}^{\ell},\in \mathbb{R}^{2d\times d},W_{e,2}^{\ell},\in \mathbb{R}^{d\times2d} We,1,R2d×d,We,2,Rd×2d

基于任务的 MLP 层

在 Graph Transformer 最后一层获得的节点表示被传递到基于任务的 MLP 网络,用于计算与任务相关的输出,然后将其馈送到损失函数以训练模型的参数

4 实验

为了评估提出的模型的性能,在ZINC,PATTERN,CLUSTER这三个数据集实验。

  • ZINC, Graph Regression:分子数据集,node代表分子,edge代表分子之间的键。键之间有丰富的特征信息,所以用第二个模型。
  • PATTERN,Node Classification:任务是把nodes分成两个communities,没有明确的edge信息,所以用第一个模型。
  • CLUSTER, Node Classification:任务是为每个node分配cluster,一共有6个cluster,用第一个模型。

模型的配置:使用PyTorch,DGL。一共有10层Graph Transformer layers,每层有8个attention head和随机隐藏单元,学习率递减策略,当学习率达到 1 0 − 6 10^{-6} 106就停止训练。使用 4 种不同的种子进行每个实验,并报告 4 次运行的平均值和平均性能测量值。
表1如下:

  • GraphTransformer (GT) 在所有数据集上的结果。 ZINC 的性能测量是 MAE,PATTERN 和 CLUSTER的性能测量是 Acc。 结果(除了 ZINC 之外,所有结果都越高越好)是使用 4 种不同种子进行 4 次运行的平均值。
  • 粗体:每个数据集表现最佳的模型。
  • 使用给定的图(稀疏图)和(完整图)执行每个实验,其中完整图在所有节点之间创建完全连接;对于 ZINC 全图,边特征被丢弃。
    在这里插入图片描述
    表2如下所示:
    每个数据集上的最佳表现分数(来自表 1)与 GNN baselines的比较
    在这里插入图片描述
    实验结论如下:
  • 由表1可知,带有PE和BN的模型实验数据更好。
  • 由表2可知,提出的模型明显比GCN和GTN要好,但没有GatedGCN好。
  • 提出的第二个模型的性能在ZINC上近似于GatedGCN。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/434955.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于Fake Location定位,运动世界校园问题

不好意思&#xff0c;之前那个文章其实是很早之前的&#xff0c;不知道为什么审核了很久一直没有通过&#xff0c;然后前几周莫名其妙点了一下重新发布&#xff0c;竟然发布成功了&#xff0c;这个方法已经失效了&#xff0c;要可以稳定&#xff0c;我建议是买一台root的手机&a…

给Ubuntu虚拟机设置静态IP地址(固定IP)

查看 为Ubuntu虚拟机配置静态IP地址&#xff08;固定IP&#xff09;的方法经过亲自测试&#xff0c;已被证实有效。 这里你记得网关就可以了&#xff0c;等下要用 查看配置前的网络信息 ifconfig 查看网关 route -n 配置 配置网络文件 cd /etc/netplan/ ls 查看自己的文件的名…

o1规划能力首测!已超越语言模型范畴,preview终于赢mini一回

克小西 发自 凹非寺 量子位 | 公众号 QbitAI o1-preview终于赢过了mini一次&#xff01; 亚利桑那州立大学的最新研究表明&#xff0c;o1-preview在规划任务上&#xff0c;表现显著优于o1-mini。 相比于传统模型的优势更是碾压级别&#xff0c;在超难任务上的准确率比Llama3.…

C++第五讲(1):STL--string--各个函数的使用方法

C第五讲&#xff1a;STL--string 1.STL简介2.string类2.1string类的常见构造2.1.1重点1&#xff1a; string&#xff08;&#xff09;2.1.2重点2&#xff1a;string(const string& str)2.1.3使用3&#xff1a;string(const string& str, size_t pos, size_t len npos)…

4.5 了解大数据处理基本流程

文章目录 1. 引言2. 数据采集2.1 数据库采集2.2 实时数据采集2.3 网络爬虫采集 3. 数据预处理3.1 数据清洗3.2 数据集成3.3 数据归约3.4 数据转换 4. 数据处理与分析4.1 数据处理4.2 数据分析 5. 数据可视化与应用5.1 数据可视化5.2 ECharts框架5.3 课堂作业 6. 结语 1. 引言 …

光控资本:什么是优质股,近期估值创历史新低的优质股盘点?

在股票商场中&#xff0c;选到优质股进行出资&#xff0c;可以让出资者取得更高的出资酬谢。美联储发布降息&#xff0c;关于A股商场而言&#xff0c;估值创新低的优质股或许将获益于美联储降息。 根据近期数据&#xff0c;归纳10家以上安排评级的个股中&#xff0c;有19只个股…

Delphi实现计算器——状态机

成品展示&#xff1a; 方案&#xff1a; 采用状态机和静态工厂模式实现。 1.使用工厂方法模式来创建操作对象 定义了一个抽象的操作类TOperation,其中声明了Calculate方法用于执行具体的计算。 然后针对不同的操作(加、减、乘、除、取模)分别创建了具体的操作类,如TAddOp…

JWT令牌技术介绍及使用

一、JWT介绍 JWT是JSON Web Token的缩写&#xff0c;即JSON Web令牌&#xff0c;是一种自包含令牌。 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准。 JWT的声明一般被用来在身份提供者和服务提供者间传递被认证的用户身份信息&#xff0c;以便于从资源服务…

数组解构是如何降低 JavaScript 的运行速度

在JavaScript开发中&#xff0c;解构赋值是一个广受欢迎的特性&#xff0c;它让代码更加简洁易读。然而&#xff0c;不同的解构模式可能会对性能产生显著影响。本文将深入探讨数组解构赋值可能带来的性能问题&#xff0c;并提供优化建议。 解构赋值的两种模式 JavaScript中的解…

Vscode超好看的渐变主题插件

样式效果&#xff1a; 插件使用方法&#xff1a; 然后重启&#xff0c;之后会显示vccode损坏&#xff0c;不用理会&#xff0c;因为这个插件是更改了应用内部代码&#xff0c;直接不再显示即可。

Spring Boot集成Redis向量数据库实现相似性搜索

1.什么是Redis向量数据库&#xff1f; Redis 是一个开源&#xff08;BSD 许可&#xff09;的内存数据结构存储&#xff0c;用作数据库、缓存、消息代理和流式处理引擎。Redis 提供数据结构&#xff0c;例如字符串、哈希、列表、集合、带范围查询的有序集合、位图、超对数日志、…

mac怎么设置ip地址映射

最近开发的项目分为了两种版本&#xff0c;一个自己用的&#xff0c;一个是卖出去的。 卖出的域名是和自己的不一样的&#xff0c;系统中有一些功能是只有卖出去的版本有的&#xff0c;但我们开发完之后还得测试&#xff0c;那就需要给自己的电脑配置一个IP地址映射了&#xf…

C++ STL容器(四) —— vector底层剖析

这篇讲解vector&#xff0c;不说废话&#xff0c;直接开始&#xff01; 文章目录 原理UML类图代码实现构造函数插入元素删除元素清空容器析构函数赋值运算符 案例分析 原理 这里简单说一下 vector 的大致思想&#xff0c;动态数组&#xff0c;即它的长度会随着我们插入元素而产…

问:全国产业园数量增长,对中小企业意味着什么?

随着全国产业园数量的持续增长&#xff0c;这一趋势无疑为中小企业带来了前所未有的机遇与可能。产业园作为产业集聚的重要载体&#xff0c;不仅为中小企业提供了更广阔的发展空间&#xff0c;还通过资源共享、成本降低、创新协同等方式&#xff0c;助力企业快速成长。 对于中…

Spire.PDF for .NET【页面设置】演示:设置 PDF 的查看器首选项和缩放系数

优化查看器首选项和缩放因子对于改善 PDF 文档的查看体验至关重要。通过使用适当的查看器首选项和缩放因子&#xff0c;您可以使您的 PDF 文档更加用户友好、可查看且适合不同的设备和平台。在本文中&#xff0c;我们将演示如何使用Spire.PDF for .NET在 C# 和 VB.NET 中为 PDF…

题库系统平台开发功能解析

题库系统开发功能介绍可以从多个方面进行阐述&#xff0c;以下是一些核心功能及其详细解释 1. 题库管理系统 题目录入与编辑&#xff1a;提供灵活的题目录入方式&#xff0c;支持手动输入、批量导入&#xff08;如从Excel、Word等文件中导入&#xff09;以及从其他题库中复制试…

【ComfyUI】控制光照节点——ComfyUI-IC-Light-Native

原始代码&#xff08;非comfyui&#xff09;&#xff1a;https://github.com/lllyasviel/IC-Light comfyui实现1&#xff08;600星&#xff09;&#xff1a;https://github.com/kijai/ComfyUI-IC-Light comfyui实现2&#xff08;500星&#xff09;&#xff1a;https://github.c…

MMD模型及动作一键完美导入UE5-Blender方案(三)

1、下载并安装blender_mmd_tools插件 1、下载并安装Blender,Blender,下载Blender3.6,下载太新的版本可能会跟blender_mmd_tools不匹配 2、github下载blender_mmd_tools:https://github.com/UuuNyaa/blender_mmd_tools/ 3、Edit->Preference->Add ons->Install F…

苏州 工业三维动画制作「世岩清上」一站式可视化营销服务商

在现代工业设计和营销中&#xff0c;三维动画已成为一种重要的视觉传达工具。它不仅能够直观展示产品的外观和功能&#xff0c;还能通过动态演示来增强观众的理解和体验。本文将深入探讨工业三维动画制作的关键点&#xff0c;包括产品动画和场景动作的制作技巧。 产品动画制作…

怎么给邮件加密?对邮件加密的五个绝佳方法,亲测有效!保教包会哦!

邮件作为日常沟通的重要工具&#xff0c;承载着大量敏感信息。 对邮件加密不仅是企业保护商业机密、客户资料的关键手段&#xff0c;也是个人维护隐私安全的必要措施。 然而&#xff0c;面对纷繁复杂的加密技术和工具&#xff0c;许多人感到无从下手。 别担心&#xff0c;本文…