Redis篇(应用案例 - 优惠卷秒杀)

目录

一、全局唯一ID

1. 简介

2. Redis实现全局唯一Id

3. 测试类

3.1. 关于 countdownlatch

3.2. CountDownLatch 中有两个最重要的方法

二、添加优惠卷

三、实现秒杀下单

四、库存超卖问题分析

六、乐观锁解决超卖问题

七、优惠券秒杀-一人一单

八、集群环境下的并发问题

九、分布式锁

1. 基本原理和实现方式对比

2. 常见的分布式锁有三种

2.1. Mysql

2.2. Redis

2.3. Zookeeper

3. Redis分布式锁的实现核心思路

九、分布式锁版 - SimpleRedisLock

1. 基本介绍

2. Redis分布式锁误删情况说明

3. 解决Redis分布式锁误删问题

4. 分布式锁的原子性问题

5. Lua脚本解决多条命令原子性问题

6. 利用Java代码调用Lua脚本改造分布式锁

7. 总结

十、分布式锁-redission

1. 简介

2. 快速入门

3. 可重入锁原理

4. 锁重试和WatchDog机制

5. MutiLock原理

十一、秒杀优化

1. 异步秒杀思路

2. Redis完成秒杀资格判断

3. 基于阻塞队列实现秒杀优化

4. 总结

十二、Redis消息队列

1. 认识消息队列

2. 基于List实现消息队列

3. 基于PubSub的消息队列

4. 基于Stream的消息队列

5. 基于Stream的消息队列-消费者组

6. 基于Redis的Stream结构作为消息队列,实现异步秒杀下单


一、全局唯一ID

1. 简介

每个店铺都可以发布优惠券:

当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些

问题:

  • id的规律性太明显
  • 受单表数据量的限制

场景分析一:

如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,

比如商城在一天时间内,卖出了多少单,这明显不合适。

场景分析二:

随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,

我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,

所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。

全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:

为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:

符号位:符号位:1bit,永远为0

时间戳:31bit,以秒为单位,可以使用69年

序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID

2. Redis实现全局唯一Id

@Component
public class RedisIdWorker {/*** 开始时间戳*/private static final long BEGIN_TIMESTAMP = 1640995200L;/*** 序列号的位数*/private static final int COUNT_BITS = 32;private StringRedisTemplate stringRedisTemplate;public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public long nextId(String keyPrefix) {// 1.生成时间戳LocalDateTime now = LocalDateTime.now();long nowSecond = now.toEpochSecond(ZoneOffset.UTC);long timestamp = nowSecond - BEGIN_TIMESTAMP;// 2.生成序列号// 2.1.获取当前日期,精确到天String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));// 2.2.自增长long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);// 3.拼接并返回return timestamp << COUNT_BITS | count;}
}

3. 测试类

3.1. 关于 countdownlatch

countdownlatch名为信号枪:主要的作用是同步协调在多线程的等待于唤醒问题,我们如果没有

CountDownLatch ,那么由于程序是异步的,当异步程序没有执行完时,主线程就已经执行完了,然后我们期望

的是分线程全部走完之后,主线程再走,所以我们此时需要使用到CountDownLatch

3.2. CountDownLatch 中有两个最重要的方法

  • countDown
  • await

await 方法 是阻塞方法,我们担心分线程没有执行完时,main线程就先执行,

所以使用await可以让main线程阻塞,那么什么时候main线程不再阻塞呢?

当 CountDownLatch 内部维护的 变量变为0时,就不再阻塞,直接放行,那么什么时候CountDownLatch 维护

的变量变为 0 呢,我们只需要调用一次countDown,内部变量就减少1,我们让分线程和变量绑定, 执行完一个

分线程就减少一个变量,当分线程全部走完,CountDownLatch 维护的变量就是0,此时await就不再阻塞,统计

出来的时间也就是所有分线程执行完后的时间。

@Test
void testIdWorker() throws InterruptedException {CountDownLatch latch = new CountDownLatch(300);Runnable task = () -> {for (int i = 0; i < 100; i++) {long id = redisIdWorker.nextId("order");System.out.println("id = " + id);}latch.countDown();};long begin = System.currentTimeMillis();for (int i = 0; i < 300; i++) {es.submit(task);}latch.await();long end = System.currentTimeMillis();System.out.println("time = " + (end - begin));
}

二、添加优惠卷

每个店铺都可以发布优惠券,分为平价券和特价券。平价券可以任意购买,而特价券需要秒杀抢购:

tb_voucher:优惠券的基本信息,优惠金额、使用规则等

tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间。特价优惠券才需要填写这些信息,平价卷由

于优惠力度并不是很

大,所以是可以任意领取,而代金券由于优惠力度大,所以像第二种卷,就得限制数量,从表结构上也能看出,

特价卷除了具有优惠卷的基本信息以外,还具有库存,抢购时间,结束时间等等字段

新增普通卷代码:VoucherController

@PostMapping
public Result addVoucher(@RequestBody Voucher voucher) {voucherService.save(voucher);return Result.ok(voucher.getId());
}

新增秒杀卷代码:VoucherController

@PostMapping("seckill")
public Result addSeckillVoucher(@RequestBody Voucher voucher) {voucherService.addSeckillVoucher(voucher);return Result.ok(voucher.getId());
}

VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {// 保存优惠券save(voucher);// 保存秒杀信息SeckillVoucher seckillVoucher = new SeckillVoucher();seckillVoucher.setVoucherId(voucher.getId());seckillVoucher.setStock(voucher.getStock());seckillVoucher.setBeginTime(voucher.getBeginTime());seckillVoucher.setEndTime(voucher.getEndTime());seckillVoucherService.save(seckillVoucher);// 保存秒杀库存到Redis中stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

三、实现秒杀下单

下单核心思路:当我们点击抢购时,会触发右侧的请求,我们只需要编写对应的controller即可

秒杀下单应该思考的内容:

  • 下单时需要判断两点:秒杀是否开始或结束,如果尚未开始或已经结束则无法下单库存是否充足,不足则无

法下单

  • 下单核心逻辑分析:当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足

秒杀条件比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,

创建订单,然后返回订单id,]如果有一个条件不满足则直接结束。

VoucherOrderServiceImpl

@Override
public Result seckillVoucher(Long voucherId) {// 1.查询优惠券SeckillVoucher voucher = seckillVoucherService.getById(voucherId);// 2.判断秒杀是否开始if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀尚未开始!");}// 3.判断秒杀是否已经结束if (voucher.getEndTime().isBefore(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀已经结束!");}// 4.判断库存是否充足if (voucher.getStock() < 1) {// 库存不足return Result.fail("库存不足!");}//5,扣减库存boolean success = seckillVoucherService.update().setSql("stock= stock -1").eq("voucher_id", voucherId).update();if (!success) {//扣减库存return Result.fail("库存不足!");}//6.创建订单VoucherOrder voucherOrder = new VoucherOrder();// 6.1.订单idlong orderId = redisIdWorker.nextId("order");voucherOrder.setId(orderId);// 6.2.用户idLong userId = UserHolder.getUser().getId();voucherOrder.setUserId(userId);// 6.3.代金券idvoucherOrder.setVoucherId(voucherId);save(voucherOrder);return Result.ok(orderId);}

四、库存超卖问题分析

有关超卖问题分析:在我们原有代码中是这么写的

 if (voucher.getStock() < 1) {// 库存不足return Result.fail("库存不足!");}//5,扣减库存boolean success = seckillVoucherService.update().setSql("stock= stock -1").eq("voucher_id", voucherId).update();if (!success) {//扣减库存return Result.fail("库存不足!");}

假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,

此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,

最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。

超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:

而对于加锁,我们通常有两种解决方案:见下图:

悲观锁:

悲观锁可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,

同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等

乐观锁:

乐观锁会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,

如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,

那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据未被修改过,

当然乐观锁还有一些变种的处理方式比如cas

乐观锁的典型代表:

就是cas,利用cas进行无锁化机制加锁,var5 是操作前读取的内存值,while中的var1+var2 是预估值,

如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换内存值

其中do while是为了在操作失败时,再次进行自旋操作,即把之前的逻辑再操作一次。

int var5;
do {var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));return var5;

课程中的使用方式:

课程中的使用方式是没有像cas一样带自旋的操作,也没有对version的版本号+1 ,他的操作逻辑是在操作时,

对版本号进行+1 操作,然后要求 version 如果是1的情况下,才能操作,

那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,

所以没有问题,此时线程2执行,线程2 最后也需要加上条件version=1 ,

但是现在由于线程1已经操作过了,所以线程2,操作时就不满足version=1的条件了,所以线程2无法执行成功

六、乐观锁解决超卖问题

修改代码方案一

VoucherOrderServiceImpl 在扣减库存时,改为:

boolean success = seckillVoucherService.update().setSql("stock = stock -1") //set stock = stock -1.eq("voucher_id", voucherId).eq("stock",voucher.getStock()).update(); //where id = ? and stock = ?

以上逻辑的核心含义是:

只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安

全的,但是以上这种方式通过测试发现会有很多失败的情况,失败的原因在于:

在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个

人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败

修改代码方案二

之前的方式要修改前后都保持一致,但是这样我们分析过,成功的概率太低,所以我们的乐观锁需要变一下,改

成stock大于0即可

boolean success = seckillVoucherService.update().setSql("stock = stock -1").eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0

扩展

针对cas中的自旋压力过大,我们可以使用Longaddr这个类去解决

Java8 提供的一个对AtomicLong改进后的一个类,LongAdder

大量线程并发更新一个原子性的时候,天然的问题就是自旋,会导致并发性问题,当然这也比我们直接使用syn来

的好,所以利用这么一个类,LongAdder来进行优化,如果获取某个值,则会对cell和base的值进行递增,最后

返回一个完整的值

七、优惠券秒杀-一人一单

需求:修改秒杀业务,要求同一个优惠券,一个用户只能下一单

现在的问题在于:

优惠卷是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,

所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单

具体操作逻辑如下:

比如时间是否充足,如果时间充足,则进一步判断库存是否足够,

然后再根据优惠卷id和用户id查询是否已经下过这个订单,如果下过这个订单,则不再下单,否则进行下单

VoucherOrderServiceImpl

初步代码:增加一人一单逻辑

@Override
public Result seckillVoucher(Long voucherId) {// 1.查询优惠券SeckillVoucher voucher = seckillVoucherService.getById(voucherId);// 2.判断秒杀是否开始if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀尚未开始!");}// 3.判断秒杀是否已经结束if (voucher.getEndTime().isBefore(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀已经结束!");}// 4.判断库存是否充足if (voucher.getStock() < 1) {// 库存不足return Result.fail("库存不足!");}// 5.一人一单逻辑// 5.1.用户idLong userId = UserHolder.getUser().getId();int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();// 5.2.判断是否存在if (count > 0) {// 用户已经购买过了return Result.fail("用户已经购买过一次!");}//6,扣减库存boolean success = seckillVoucherService.update().setSql("stock= stock -1").eq("voucher_id", voucherId).update();if (!success) {//扣减库存return Result.fail("库存不足!");}//7.创建订单VoucherOrder voucherOrder = new VoucherOrder();// 7.1.订单idlong orderId = redisIdWorker.nextId("order");voucherOrder.setId(orderId);voucherOrder.setUserId(userId);// 7.3.代金券idvoucherOrder.setVoucherId(voucherId);save(voucherOrder);return Result.ok(orderId);}

存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是

乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作

注意:在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个

createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁

@Transactional
public synchronized Result createVoucherOrder(Long voucherId) {Long userId = UserHolder.getUser().getId();// 5.1.查询订单int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();// 5.2.判断是否存在if (count > 0) {// 用户已经购买过了return Result.fail("用户已经购买过一次!");}// 6.扣减库存boolean success = seckillVoucherService.update().setSql("stock = stock - 1") // set stock = stock - 1.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0.update();if (!success) {// 扣减失败return Result.fail("库存不足!");}// 7.创建订单VoucherOrder voucherOrder = new VoucherOrder();// 7.1.订单idlong orderId = redisIdWorker.nextId("order");voucherOrder.setId(orderId);// 7.2.用户idvoucherOrder.setUserId(userId);// 7.3.代金券idvoucherOrder.setVoucherId(voucherId);save(voucherOrder);// 7.返回订单idreturn Result.ok(orderId);
}

但是这样添加锁,锁的粒度太粗了,在使用锁过程中,控制锁粒度是一个非常重要的事情,

因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度,

以下这段代码需要修改为:

intern() 这个方法是从常量池中拿到数据,如果我们直接使用userId.toString() 他拿到的对象实际上是不同的对

象,new出来的对象,我们使用锁必须保证锁必须是同一把,所以我们需要使用intern()方法

@Transactional
public  Result createVoucherOrder(Long voucherId) {Long userId = UserHolder.getUser().getId();synchronized(userId.toString().intern()){// 5.1.查询订单int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();// 5.2.判断是否存在if (count > 0) {// 用户已经购买过了return Result.fail("用户已经购买过一次!");}// 6.扣减库存boolean success = seckillVoucherService.update().setSql("stock = stock - 1") // set stock = stock - 1.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0.update();if (!success) {// 扣减失败return Result.fail("库存不足!");}// 7.创建订单VoucherOrder voucherOrder = new VoucherOrder();// 7.1.订单idlong orderId = redisIdWorker.nextId("order");voucherOrder.setId(orderId);// 7.2.用户idvoucherOrder.setUserId(userId);// 7.3.代金券idvoucherOrder.setVoucherId(voucherId);save(voucherOrder);// 7.返回订单idreturn Result.ok(orderId);}
}

但是以上代码还是存在问题,问题的原因在于当前方法被spring的事务控制,

如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题,

所以我们选择将当前方法整体包裹起来,确保事务不会出现问题:如下:

在seckillVoucher方法中,添加以下逻辑,这样就能保证事务的特性,同时也控制了锁的粒度

但是以上做法依然有问题,因为你调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,

所以这个地方,我们需要获得原始的事务对象, 来操作事务

八、集群环境下的并发问题

通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。

  1. 我们将服务启动两份,端口分别为8081和8082

  1. 然后修改nginx的conf目录下的nginx.conf文件,配置反向代理和负载均衡

具体操作(略)

有关锁失效原因分析

由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有

两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现

在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一

个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的

原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。

九、分布式锁

1. 基本原理和实现方式对比

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线

程进行,让程序串行执行,这就是分布式锁的核心思路

那么分布式锁他应该满足一些什么样的条件呢?

可见性:多个线程都能看到相同的结果,

注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思

互斥:互斥是分布式锁的最基本的条件,使得程序串行执行

高可用:程序不易崩溃,时时刻刻都保证较高的可用性

高性能:

由于加锁本身就让性能降低,所有对于分布式锁本身需要他较高的加锁性能和释放锁性能

安全性:安全也是程序中必不可少的一环

2. 常见的分布式锁有三种

2.1. Mysql

  • mysql本身就带有锁机制,但是由于mysql性能本身一般,
  • 所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见

2.2. Redis

  • redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布

式锁,

  • 利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无

法获得到锁,

  • 利用这套逻辑来实现分布式锁

2.3. Zookeeper

zookeeper也是企业级开发中较好的一个实现分布式锁的方案,

由于本套视频并不讲解zookeeper的原理和分布式锁的实现,所以不过多阐述

3. Redis分布式锁的实现核心思路

实现分布式锁时需要实现的两个基本方法:

获取锁

  • 互斥:确保只能有一个线程获取锁
  • 非阻塞:尝试一次,成功返回true,失败返回false

释放锁:

  • 手动释放
  • 超时释放:获取锁时添加一个超时时间

核心思路:

我们利用 redis 的 setNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis中就有这个

key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢

到锁的哥们,等待一定时间后重试即可

九、分布式锁版 - SimpleRedisLock

1. 基本介绍

加锁逻辑

锁的基本接口

SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性

private static final String KEY_PREFIX="lock:"
@Override
public boolean tryLock(long timeoutSec) {// 获取线程标示String threadId = Thread.currentThread().getId()// 获取锁Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(success);
}

释放锁逻辑

SimpleRedisLock

释放锁,防止删除别人的锁

public void unlock() {//通过del删除锁stringRedisTemplate.delete(KEY_PREFIX + name);
}

修改业务代码

  @Overridepublic Result seckillVoucher(Long voucherId) {// 1.查询优惠券SeckillVoucher voucher = seckillVoucherService.getById(voucherId);// 2.判断秒杀是否开始if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀尚未开始!");}// 3.判断秒杀是否已经结束if (voucher.getEndTime().isBefore(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀已经结束!");}// 4.判断库存是否充足if (voucher.getStock() < 1) {// 库存不足return Result.fail("库存不足!");}Long userId = UserHolder.getUser().getId();//创建锁对象(新增代码)SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);//获取锁对象boolean isLock = lock.tryLock(1200);//加锁失败if (!isLock) {return Result.fail("不允许重复下单");}try {//获取代理对象(事务)IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);} finally {//释放锁lock.unlock();}}

2. Redis分布式锁误删情况说明

逻辑说明:

持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把

锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时

就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明

解决方案:

解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删

除,假设还是上边的情况,线程1卡顿,锁自动释放,线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后

删除锁,但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果

没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。

3. 解决Redis分布式锁误删问题

需求:

修改之前的分布式锁实现,

满足:

在获取锁时存入线程标示(可以用UUID表示)在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致

如果一致则释放锁

如果不一致则不释放锁

核心逻辑:

在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,

如果是,则进行删除,如果不是,则不进行删除。

具体代码如下:加锁

private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {// 获取线程标示String threadId = ID_PREFIX + Thread.currentThread().getId();// 获取锁Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(success);
}

释放锁

public void unlock() {// 获取线程标示String threadId = ID_PREFIX + Thread.currentThread().getId();// 获取锁中的标示String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);// 判断标示是否一致if(threadId.equals(id)) {// 释放锁stringRedisTemplate.delete(KEY_PREFIX + name);}
}

有关代码实操说明:

在我们修改完此处代码后,我们重启工程,然后启动两个线程,第一个线程持有锁后,手动释放锁,第二个线程

此时进入到锁内部,再放行第一个线程,此时第一个线程由于锁的value值并非是自己,所以不能释放锁,也就无

法删除别人的锁,此时第二个线程能够正确释放锁,通过这个案例初步说明我们解决了锁误删的问题。

4. 分布式锁的原子性问题

更为极端的误删逻辑说明:

线程1现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,

比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,

那么此时线程2进来,但是线程1他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,

相当于条件判断并没有起到作用,这就是删锁时的原子性问题,

之所以有这个问题,是因为线程1的拿锁,比锁,删锁,实际上并不是原子性的,我们要防止刚才的情况发生,

5. Lua脚本解决多条命令原子性问题

Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。

Lua是一种编程语言,它的基本语法大家可以参考网站:https://www.runoob.com/lua/lua-tutorial.html,

这里重点介绍Redis提供的调用函数,我们可以使用lua去操作redis,又能保证他的原子性,

这样就可以实现拿锁比锁删锁是一个原子性动作了,

作为Java程序员这一块并不作一个简单要求,并不需要大家过于精通,只需要知道他有什么作用即可。

这里重点介绍Redis提供的调用函数,语法如下:

redis.call('命令名称', 'key', '其它参数', ...)

例如,我们要执行set name jack,则脚本是这样:

# 执行 set name jack
redis.call('set', 'name', 'jack')

例如,我们要先执行set name Rose,再执行get name,则脚本如下:

# 先执行 set name jack
redis.call('set', 'name', 'Rose')
# 再执行 get name
local name = redis.call('get', 'name')
# 返回
return name

写好脚本以后,需要用Redis命令来调用脚本,调用脚本的常见命令如下:

例如,我们要执行redis.call('set', 'name', 'jack') 这个脚本,语法如下:

如果脚本中的key、value不想写死,可以作为参数传递。

key类型参数会放入KEYS数组,其它参数会放入ARGV数组,在脚本中可以从KEYS和ARGV数组获取这些参数:

接下来我们来回一下我们释放锁的逻辑:

释放锁的业务流程是这样的

  1. 获取锁中的线程标示
  2. 判断是否与指定的标示(当前线程标示)一致
  3. 如果一致则释放锁(删除)
  4. 如果不一致则什么都不做

如果用Lua脚本来表示则是这样的:

最终我们操作redis的拿锁比锁删锁的lua脚本就会变成这样

-- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示
-- 获取锁中的标示,判断是否与当前线程标示一致
if (redis.call('GET', KEYS[1]) == ARGV[1]) then-- 一致,则删除锁return redis.call('DEL', KEYS[1])
end
-- 不一致,则直接返回
return 0

6. 利用Java代码调用Lua脚本改造分布式锁

lua脚本本身并不需要大家花费太多时间去研究,只需要知道如何调用,大致是什么意思即可,所以在笔记中并不

会详细的去解释这些lua表达式的含义。

我们的RedisTemplate中,可以利用execute方法去执行lua脚本,参数对应关系就如下图股

Java代码

private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;static {UNLOCK_SCRIPT = new DefaultRedisScript<>();UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));UNLOCK_SCRIPT.setResultType(Long.class);}public void unlock() {// 调用lua脚本stringRedisTemplate.execute(UNLOCK_SCRIPT,Collections.singletonList(KEY_PREFIX + name),ID_PREFIX + Thread.currentThread().getId());
}

经过以上代码改造后,我们就能够实现 拿锁比锁删锁的原子性动作了~

7. 总结

基于Redis的分布式锁实现思路:

利用set nx ex获取锁,并设置过期时间,保存线程标示

释放锁时先判断线程标示是否与自己一致,一致则删除锁

特性:

利用set nx满足互斥性

利用set ex保证故障时锁依然能释放,避免死锁,提高安全性

利用Redis集群保证高可用和高并发特性

通俗理解

我们一路走来,利用添加过期时间,防止死锁问题的发生,但是有了过期时间之后,可能出现误删别人锁的问

题,这个问题我们开始是利用删之前 通过拿锁,比锁,删锁这个逻辑来解决的,也就是删之前判断一下当前这把

锁是否是属于自己的,但是现在还有原子性问题,也就是我们没法保证拿锁比锁删锁是一个原子性的动作,最后

通过lua表达式来解决这个问题

但是目前还剩下一个问题锁不住,什么是锁不住呢,你想一想,如果当过期时间到了之后,我们可以给他续期一

下,比如续个30s,就好像是网吧上网, 网费到了之后,然后说,来,网管,再给我来10块的,是不是后边的问

题都不会发生了,那么续期问题怎么解决呢,可以依赖于我们接下来要学习redission啦

测试逻辑:

第一个线程进来,得到了锁,手动删除锁,模拟锁超时了,其他线程会执行lua来抢锁,

当第一天线程利用lua删除锁时,lua能保证他不能删除他的锁,

第二个线程删除锁时,利用lua同样可以保证不会删除别人的锁,同时还能保证原子性。

十、分布式锁-redission

1. 简介

基于setnx实现的分布式锁存在下面的问题:

重入问题

重入问题是指获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,

比如HashTable这样的代码中,他的方法都是使用synchronized修饰的,

假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?

所以可重入锁他的主要意义是防止死锁,我们的synchronized和Lock锁都是可重入的。

不可重试

是指目前的分布式只能尝试一次,我们认为合理的情况是:当线程在获得锁失败后,他应该能再次尝试获得锁。

超时释放:

我们在加锁时增加了过期时间,这样的我们可以防止死锁,但是如果卡顿的时间超长,

虽然我们采用了lua表达式防止删锁的时候,误删别人的锁,但是毕竟没有锁住,有安全隐患

主从一致性:

如果Redis提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,

而万一在同步过去之前,主机宕机了,就会出现死锁问题。

那么什么是Redission呢

Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。

它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。

Redission提供了分布式锁的多种多样的功能

2. 快速入门

引入依赖:

<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.13.6</version></dependency>

配置Redisson客户端:

@Configuration
public class RedissonConfig {@Beanpublic RedissonClient redissonClient(){// 配置Config config = new Config();config.useSingleServer().setAddress("redis://192.168.150.101:6379").setPassword("123321");// 创建RedissonClient对象return Redisson.create(config);}
}

如何使用Redission的分布式锁

@Resource
private RedissionClient redissonClient;@Test
void testRedisson() throws Exception{//获取锁(可重入),指定锁的名称RLock lock = redissonClient.getLock("anyLock");//尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);//判断获取锁成功if(isLock){try{System.out.println("执行业务");          }finally{//释放锁lock.unlock();}}
}

在 VoucherOrderServiceImpl

注入RedissonClient

@Resource
private RedissonClient redissonClient;@Override
public Result seckillVoucher(Long voucherId) {// 1.查询优惠券SeckillVoucher voucher = seckillVoucherService.getById(voucherId);// 2.判断秒杀是否开始if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀尚未开始!");}// 3.判断秒杀是否已经结束if (voucher.getEndTime().isBefore(LocalDateTime.now())) {// 尚未开始return Result.fail("秒杀已经结束!");}// 4.判断库存是否充足if (voucher.getStock() < 1) {// 库存不足return Result.fail("库存不足!");}Long userId = UserHolder.getUser().getId();//创建锁对象 这个代码不用了,因为我们现在要使用分布式锁//SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);RLock lock = redissonClient.getLock("lock:order:" + userId);//获取锁对象boolean isLock = lock.tryLock();//加锁失败if (!isLock) {return Result.fail("不允许重复下单");}try {//获取代理对象(事务)IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);} finally {//释放锁lock.unlock();}}

3. 可重入锁原理

在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,

那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,

如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,

也是重入一次就加一,释放一次就-1 ,直到减少成 0 时,表示当前这把锁没有被人持有。

在redission中,我们的也支持支持可重入锁

在分布式锁中,他采用hash结构用来存储锁,其中大key表示表示这把锁是否存在,

用小key表示当前这把锁被哪个线程持有,所以接下来我们一起分析一下当前的这个lua表达式

这个地方一共有3个参数

KEYS[1] : 锁名称

ARGV[1]: 锁失效时间

ARGV[2]: id + ":" + threadId; 锁的小key

exists: 判断数据是否存在 name:是lock是否存在,如果==0,就表示当前这把锁不存在

redis.call('hset', KEYS[1], ARGV[2], 1);此时他就开始往redis里边去写数据 ,写成一个hash结构

Lock{id + ":" + threadId :  1
}

如果当前这把锁存在,则第一个条件不满足,再判断

redis.call('hexists', KEYS[1], ARGV[2]) == 1

此时需要通过大key+小key判断当前这把锁是否是属于自己的,

如果是自己的,则进行redis.call('hincrby', KEYS[1], ARGV[2], 1)

将当前这个锁的value进行+1,redis.call('pexpire', KEYS[1], ARGV[1]);

然后再对其设置过期时间,如果以上两个条件都不满足,则表示当前这把锁抢锁失败,最后返回pttl,即为当前这

把锁的失效时间

如果小伙帮们看了前边的源码, 你会发现他会去判断当前这个方法的返回值是否为null,

如果是null,则对应则前两个if对应的条件,退出抢锁逻辑,

如果返回的不是null,即走了第三个分支,在源码处会进行while(true)的自旋抢锁。

"if (redis.call('exists', KEYS[1]) == 0) then " +"redis.call('hset', KEYS[1], ARGV[2], 1); " +"redis.call('pexpire', KEYS[1], ARGV[1]); " +"return nil; " +"end; " +"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +"redis.call('pexpire', KEYS[1], ARGV[1]); " +"return nil; " +"end; " +"return redis.call('pttl', KEYS[1]);"

4. 锁重试和WatchDog机制

说明

由于课程中已经说明了有关tryLock的源码解析以及其看门狗原理,

所以笔者在这里给大家分析lock()方法的源码解析,希望大家在学习过程中,

能够掌握更多的知识抢锁过程中,获得当前线程,通过tryAcquire进行抢锁,该抢锁逻辑和之前逻辑相同

  1. 先判断当前这把锁是否存在,如果不存在,插入一把锁,返回null
  2. 判断当前这把锁是否是属于当前线程,如果是,则返回null

所以如果返回是null,则代表着当前这哥们已经抢锁完毕,或者可重入完毕,

但是如果以上两个条件都不满足,则进入到第三个条件,返回的是锁的失效时间,

同学们可以自行往下翻一点点,你能发现有个while( true)再次进行tryAcquire进行抢锁

long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {return;
}

接下来会有一个条件分支,因为lock方法有重载方法,一个是带参数,一个是不带参数,如果带带参数传入的值

是-1,如果传入参数,则leaseTime是他本身,所以如果传入了参数,此时leaseTime != -1 则会进去抢锁,抢锁

的逻辑就是之前说的那三个逻辑

if (leaseTime != -1) {return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}

如果是没有传入时间,则此时也会进行抢锁, 而且抢锁时间是默认看门狗时间

commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()

ttlRemainingFuture.onComplete((ttlRemaining, e) 这句话相当于对以上抢锁进行了监听,也就是说当上边抢锁

完毕后,此方法会被调用,具体调用的逻辑就是去后台开启一个线程,进行续约逻辑,也就是看门狗线程

RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {if (e != null) {return;}// lock acquiredif (ttlRemaining == null) {scheduleExpirationRenewal(threadId);}
});
return ttlRemainingFuture;

此逻辑就是续约逻辑,注意看commandExecutor.getConnectionManager().newTimeout()此方法

Method(new TimerTask() {},参数2 ,参数3 )

指的是:通过参数2,参数3 去描述什么时候去做参数1的事情,现在的情况是:10s之后去做参数一的事情

因为锁的失效时间是30s,当10s之后,此时这个timeTask 就触发了,他就去进行续约,把当前这把锁续约成

30s,如果操作成功,那么此时就会递归调用自己,再重新设置一个timeTask(),于是再过10s后又再设置一个

timerTask,完成不停的续约

那么大家可以想一想,假设我们的线程出现了宕机他还会续约吗?

当然不会,因为没有人再去调用renewExpiration这个方法,所以等到时间之后自然就释放了。

private void renewExpiration() {ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());if (ee == null) {return;}Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {@Overridepublic void run(Timeout timeout) throws Exception {ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());if (ent == null) {return;}Long threadId = ent.getFirstThreadId();if (threadId == null) {return;}RFuture<Boolean> future = renewExpirationAsync(threadId);future.onComplete((res, e) -> {if (e != null) {log.error("Can't update lock " + getName() + " expiration", e);return;}if (res) {// reschedule itselfrenewExpiration();}});}}, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);ee.setTimeout(task);
}

5. MutiLock原理

为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例

此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去

的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没

有锁信息,此时锁信息就已经丢掉了。

为了解决这个问题,redission提出来了MutiLock锁,使用这把锁咱们就不使用主从了,每个节点的地位都是一样

的,这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设

现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可

靠性。

那么MutiLock 加锁原理是什么呢?笔者画了一幅图来说明

当我们去设置了多个锁时,redission会将多个锁添加到一个集合中,然后用while循环去不停去尝试拿锁,但是会

有一个总共的加锁时间,这个时间是用需要加锁的个数 * 1500ms ,假设有3个锁,那么时间就是4500ms,假设

在这4500ms内,所有的锁都加锁成功, 那么此时才算是加锁成功,如果在4500ms有线程加锁失败,则会再次去

进行重试.

十一、秒杀优化

1. 异步秒杀思路

我们来回顾一下下单流程

当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤

  1. 查询优惠卷
  2. 判断秒杀库存是否足够
  3. 查询订单
  4. 校验是否是一人一单
  5. 扣减库存
  6. 创建订单

在这六步操作中,又有很多操作是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执

行的很慢,所以我们需要异步程序执行,那么如何加速呢?

在这里笔者想给大家分享一下课程内没有的思路,看看有没有小伙伴这么想,比如,我们可以不可以使用异步编

排来做,或者说我开启N多线程,N多个线程,一个线程执行查询优惠卷,一个执行判断扣减库存,一个去创建订

单等等,然后再统一做返回,这种做法和课程中有哪种好呢?

答案是课程中的好,因为如果你采用我刚说的方式,如果访问的人很多,那么线程池中的线程可能一下子就被消

耗完了,而且你使用上述方案,最大的特点在于,你觉得时效性会非常重要,但是你想想是吗?

并不是,比如我只要确定他能做这件事,然后我后边慢慢做就可以了,我并不需要他一口气做完这件事,所以我

们应当采用的是课程中,类似消息队列的方式来完成我们的需求,而不是使用线程池或者是异步编排的方式来完

成这个需求。

优化方案:

我们将耗时比较短的逻辑判断放入到redis中,比如是否库存足够,比如是否一人一单,这样的操作,只要这种逻

辑可以完成,就意味着我们是一定可以下单完成的,我们只需要进行快速的逻辑判断,根本就不用等下单逻辑走

完,我们直接给用户返回成功, 再在后台开一个线程,后台线程慢慢的去执行queue里边的消息,这样程序不就

超级快了吗?

而且也不用担心线程池消耗殆尽的问题,因为这里我们的程序中并没有手动使用任何线程池,当然这里边有两个

难点

第一个难点是我们怎么在redis中去快速校验一人一单,还有库存判断

第二个难点是由于我们校验和tomct下单是两个线程,那么我们如何知道到底哪个单他最后是否成功,或者是下单

完成,为了完成这件事我们在redis操作完之后,我们会将一些信息返回给前端,同时也会把这些信息丢到异步

queue中去,后续操作中,可以通过这个id来查询我们tomcat中的下单逻辑是否完成了。

我们现在来看看整体思路:

当用户下单之后,判断库存是否充足只需要导redis中去根据key找对应的value是否大于0即可,

如果不充足,则直接结束,如果充足,继续在redis中判断用户是否可以下单,

如果set集合中没有这条数据,说明他可以下单,

如果set集合中没有这条记录,则将userId和优惠卷存入到redis中,并且返回0,

整个过程需要保证是原子性的,我们可以使用lua来操作

当以上判断逻辑走完之后,我们可以判断当前redis中返回的结果是否是0,

如果是0,则表示可以下单,则将之前说的信息存入到到queue中去,然后返回,

然后再来个线程异步的下单,前端可以通过返回的订单id来判断是否下单成功。

2. Redis完成秒杀资格判断

需求:

新增秒杀优惠券的同时,将优惠券信息保存到Redis中

基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功

如果抢购成功,将优惠券id和用户id封装后存入阻塞队列

开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {// 保存优惠券save(voucher);// 保存秒杀信息SeckillVoucher seckillVoucher = new SeckillVoucher();seckillVoucher.setVoucherId(voucher.getId());seckillVoucher.setStock(voucher.getStock());seckillVoucher.setBeginTime(voucher.getBeginTime());seckillVoucher.setEndTime(voucher.getEndTime());seckillVoucherService.save(seckillVoucher);// 保存秒杀库存到Redis中//SECKILL_STOCK_KEY 这个变量定义在RedisConstans中//private static final String SECKILL_STOCK_KEY ="seckill:stock:"stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

完整lua表达式

-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then-- 3.2.库存不足,返回1return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then-- 3.3.存在,说明是重复下单,返回2return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

当以上lua表达式执行完毕后,剩下的就是根据步骤3,4来执行我们接下来的任务了

VoucherOrderServiceImpl

@Override
public Result seckillVoucher(Long voucherId) {//获取用户Long userId = UserHolder.getUser().getId();long orderId = redisIdWorker.nextId("order");// 1.执行lua脚本Long result = stringRedisTemplate.execute(SECKILL_SCRIPT,Collections.emptyList(),voucherId.toString(), userId.toString(), String.valueOf(orderId));int r = result.intValue();// 2.判断结果是否为0if (r != 0) {// 2.1.不为0 ,代表没有购买资格return Result.fail(r == 1 ? "库存不足" : "不能重复下单");}//TODO 保存阻塞队列// 3.返回订单idreturn Result.ok(orderId);
}

3. 基于阻塞队列实现秒杀优化

VoucherOrderServiceImpl

修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,

如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,

如果是0,则把下单的逻辑保存到队列中去,然后异步执行

//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
// 用于线程池处理的任务
// 当初始化完毕后,就会去从对列中去拿信息private class VoucherOrderHandler implements Runnable{@Overridepublic void run() {while (true){try {// 1.获取队列中的订单信息VoucherOrder voucherOrder = orderTasks.take();// 2.创建订单handleVoucherOrder(voucherOrder);} catch (Exception e) {log.error("处理订单异常", e);}}}private void handleVoucherOrder(VoucherOrder voucherOrder) {//1.获取用户Long userId = voucherOrder.getUserId();// 2.创建锁对象RLock redisLock = redissonClient.getLock("lock:order:" + userId);// 3.尝试获取锁boolean isLock = redisLock.lock();// 4.判断是否获得锁成功if (!isLock) {// 获取锁失败,直接返回失败或者重试log.error("不允许重复下单!");return;}try {//注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效proxy.createVoucherOrder(voucherOrder);} finally {// 释放锁redisLock.unlock();}}//aprivate BlockingQueue<VoucherOrder> orderTasks =new  ArrayBlockingQueue<>(1024 * 1024);@Overridepublic Result seckillVoucher(Long voucherId) {Long userId = UserHolder.getUser().getId();long orderId = redisIdWorker.nextId("order");// 1.执行lua脚本Long result = stringRedisTemplate.execute(SECKILL_SCRIPT,Collections.emptyList(),voucherId.toString(), userId.toString(), String.valueOf(orderId));int r = result.intValue();// 2.判断结果是否为0if (r != 0) {// 2.1.不为0 ,代表没有购买资格return Result.fail(r == 1 ? "库存不足" : "不能重复下单");}VoucherOrder voucherOrder = new VoucherOrder();// 2.3.订单idlong orderId = redisIdWorker.nextId("order");voucherOrder.setId(orderId);// 2.4.用户idvoucherOrder.setUserId(userId);// 2.5.代金券idvoucherOrder.setVoucherId(voucherId);// 2.6.放入阻塞队列orderTasks.add(voucherOrder);//3.获取代理对象proxy = (IVoucherOrderService)AopContext.currentProxy();//4.返回订单idreturn Result.ok(orderId);}@Transactionalpublic  void createVoucherOrder(VoucherOrder voucherOrder) {Long userId = voucherOrder.getUserId();// 5.1.查询订单int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();// 5.2.判断是否存在if (count > 0) {// 用户已经购买过了log.error("用户已经购买过了");return ;}// 6.扣减库存boolean success = seckillVoucherService.update().setSql("stock = stock - 1") // set stock = stock - 1.eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0.update();if (!success) {// 扣减失败log.error("库存不足");return ;}save(voucherOrder);}

4. 总结

秒杀业务的优化思路是什么?

先利用Redis完成库存余量、一人一单判断,完成抢单业务

再将下单业务放入阻塞队列,利用独立线程异步下单

基于阻塞队列的异步秒杀存在哪些问题?

内存限制问题

数据安全问题

十二、Redis消息队列

1. 认识消息队列

什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:

消息队列:存储和管理消息,也被称为消息代理(Message Broker)

生产者:发送消息到消息队列

消费者:从消息队列获取消息并处理消息

使用队列的好处

解耦:所谓解耦,举一个生活中的例子就是:快递员(生产者)把快递放到快递柜里边(Message Queue)去,

我们(消费者)从快递柜里边去拿东西,这就是一个异步,如果耦合,那么这个快递员相当于直接把快递交给你,这

事固然好,但是万一你不在家,那么快递员就会一直等你,这就浪费了快递员的时间,所以这种思想在我们日常

开发中,是非常有必要的。

这种场景在我们秒杀中就变成了:我们下单之后,利用redis去进行校验下单条件,再通过队列把消息发送出去,

然后再启动一个线程去消费这个消息,完成解耦,同时也加快我们的响应速度。

这里我们可以使用一些现成的mq,比如kafka,rabbitmq等等,但是呢,如果没有安装mq,我们也可以直接使

用redis提供的mq方案,降低我们的部署和学习成本。

2. 基于List实现消息队列

基于List结构模拟消息队列

消息队列(Message Queue),字面意思就是存放消息的队列。

而Redis的list数据结构是一个双向链表,很容易模拟出队列效果。

队列是入口和出口不在一边,因此我们可以利用:LPUSH 结合 RPOP、或者 RPUSH 结合 LPOP 来实现。

不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像JVM的阻塞队列那样会阻塞并等待

消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。

基于List的消息队列有哪些优缺点?

优点:

利用Redis存储,不受限于JVM内存上限

基于Redis的持久化机制,数据安全性有保证

可以满足消息有序性

缺点:

无法避免消息丢失

只支持单消费者

3. 基于PubSub的消息队列

PubSub(发布订阅)是Redis2.0版本引入的消息传递模型。

顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消

息。

SUBSCRIBE channel [channel] :订阅一个或多个频道

PUBLISH channel msg :向一个频道发送消息

PSUBSCRIBE pattern[pattern] :订阅与pattern格式匹配的所有频道

基于PubSub的消息队列有哪些优缺点?

优点:

采用发布订阅模型,支持多生产、多消费

缺点:

不支持数据持久化

无法避免消息丢失

消息堆积有上限,超出时数据丢失

4. 基于Stream的消息队列

Stream 是 Redis 5.0 引入的一种新数据类型,可以实现一个功能非常完善的消息队列。

发送消息的命令:

例如:

读取消息的方式之一:XREAD

例如,使用XREAD读取第一个消息:

XREAD阻塞方式,读取最新的消息:

在业务开发中,我们可以循环的调用XREAD阻塞方式来查询最新消息,从而实现持续监听队列的效果,

伪代码如下:

注意:

当我们指定起始ID为$时,代表读取最新的消息,如果我们处理一条消息的过程中,又有超过1条以上的消息到达

队列,则下次获取时也只能获取到最新的一条,会出现漏读消息的问题

STREAM类型消息队列的XREAD命令特点:

消息可回溯

一个消息可以被多个消费者读取

可以阻塞读取

有消息漏读的风险

5. 基于Stream的消息队列-消费者组

消费者组(Consumer Group):将多个消费者划分到一个组中,监听同一个队列。

具备下列特点:

创建消费者组:

groupName:消费者组名称

ID:起始ID标示,$代表队列中最后一个消息,0则代表队列中第一个消息

MKSTREAM:队列不存在时自动创建队列

其它常见命令:

删除指定的消费者组

XGROUP DESTORY key groupName

给指定的消费者组添加消费者

XGROUP CREATECONSUMER key groupname consumername

删除消费者组中的指定消费者

XGROUP DELCONSUMER key groupname consumername

从消费者组读取消息:

XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] [NOACK] STREAMS key [key ...] ID [ID ...]

group:消费组名称

consumer:消费者名称,如果消费者不存在,会自动创建一个消费者

count:本次查询的最大数量

BLOCK milliseconds:当没有消息时最长等待时间

NOACK:无需手动ACK,获取到消息后自动确认

STREAMS key:指定队列名称

ID:获取消息的起始ID:

">":从下一个未消费的消息开始

其它:根据指定id从pending-list中获取已消费但未确认的消息,例如0,是从pending-list中的第一个消息开始

消费者监听消息的基本思路:

STREAM类型消息队列的XREADGROUP命令特点:

消息可回溯

可以多消费者争抢消息,加快消费速度

可以阻塞读取

没有消息漏读的风险

有消息确认机制,保证消息至少被消费一次

最后我们来个小对比

6. 基于Redis的Stream结构作为消息队列,实现异步秒杀下单

需求:

创建一个Stream类型的消息队列,名为stream.orders

修改之前的秒杀下单Lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,

内容包含voucherId、userId、orderId

项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单\

修改lua表达式,新增3.6

VoucherOrderServiceImpl

private class VoucherOrderHandler implements Runnable {@Overridepublic void run() {while (true) {try {// 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(Consumer.from("g1", "c1"),StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),StreamOffset.create("stream.orders", ReadOffset.lastConsumed()));// 2.判断订单信息是否为空if (list == null || list.isEmpty()) {// 如果为null,说明没有消息,继续下一次循环continue;}// 解析数据MapRecord<String, Object, Object> record = list.get(0);Map<Object, Object> value = record.getValue();VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);// 3.创建订单createVoucherOrder(voucherOrder);// 4.确认消息 XACKstringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());} catch (Exception e) {log.error("处理订单异常", e);//处理异常消息handlePendingList();}}}private void handlePendingList() {while (true) {try {// 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(Consumer.from("g1", "c1"),StreamReadOptions.empty().count(1),StreamOffset.create("stream.orders", ReadOffset.from("0")));// 2.判断订单信息是否为空if (list == null || list.isEmpty()) {// 如果为null,说明没有异常消息,结束循环break;}// 解析数据MapRecord<String, Object, Object> record = list.get(0);Map<Object, Object> value = record.getValue();VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);// 3.创建订单createVoucherOrder(voucherOrder);// 4.确认消息 XACKstringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());} catch (Exception e) {log.error("处理pendding订单异常", e);try{Thread.sleep(20);}catch(Exception e){e.printStackTrace();}}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/435122.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1比25万基础电子地图(港澳版)

我们为你分享过四川、云南、江西、贵州、重庆、青海、西藏、新疆、甘肃、黑龙江、吉林、湖北、内蒙古、广东、广西、浙江、河南、湖南、宁夏、山西、陕西、天津、山东、河北、江苏、福建、辽宁、北京、安徽、上海、海南和台湾的1比25万基础电子地图&#xff0c;现在再为你分享港…

MySQL --数据类型

文章目录 1.数据类型分类2.数值类型2.1 tinyint类型2.2 bit类型2.3小数类型2.31float2.32decimal 3.字符串类型3.1 char3.2varchar3.3 char和varchar比较 4.日期和时间类型5.enum和set 1.数据类型分类 2.数值类型 2.1 tinyint类型 数值越界测试&#xff1a; create table tt1…

ubuntu内网穿透后在公网使用ssh登录

需求&#xff1a; 我有一台内网可以通过ssh 22端口访问的设备操作系统是ubuntu server我还有1台拥有公网IP的服务器&#xff0c;IP地址是 6.66.666.6666我想随时从其他网段通过ssh访问我的ubuntu server设备 实现&#xff1a; 工具准备&#xff1a;frp 网址&#xff1a;https…

Spring源码学习:SpringMVC(3)mvcannotation-driven标签解析【RequestMappingHandlerMapping生成】

目录 前言mvc:annotation-driven标签概述mvc:annotation-driven标签解析【RequestMappingHandlerMapping生成】AnnotationDrivenBeanDefinitionParser#parse &#xff08;解析入口&#xff09;RequestMappingHandlerMapping的实例化类图afterPropertiesSetAbstractHandlerMetho…

MySQL数据库——索引

目录 什么是索引&#xff08;Index&#xff09;&#xff1f; 怎样加索引&#xff1f; 索引的特点 索引类型 主键索引(Primary Key) 辅助索引&#xff08;二级索引&#xff09; 聚集索引和非聚集索引 聚集索引 非聚集索引 单列索引和联合索引 单列索引 联合索引 创…

mac Wireshark You do not have permission to capture on device “rvio“.

原因&#xff1a; 权限不足 解决方案&#xff1a; 打开终端在终端输入 whoamin (会在终端显示本机的实际用户名字) 例如&#xff1a;xiaoming进入 /dev 目录 cd /dev输入命令&#xff1a;ls -la | grep bp输入命令&#xff1a;sudo chown whoamin xiaoming:admin bp*重新打开 …

Python(五)-函数

目录 函数的定义与调用 特点 语法格式 函数的参数 函数的返回值 函数嵌套调用 变量的作用域 局部变量 全局变量 函数的多种参数 位置参数 关键字参数 默认参数 可变参数 函数的定义与调用 python函数需要使用def关键字来定义,需要先定义,后调用 特点: 先定义…

【数据结构与算法】LeetCode:二分查找

文章目录 二分查找二分查找搜索插入位置 &#xff08;Hot 100&#xff09;x 的平方根搜索二维矩阵&#xff08;Hot 100&#xff09;在排序数组中查找元素的第一个和最后一个位置 &#xff08;Hot 100&#xff09;搜索旋转排序数组 &#xff08;Hot 100&#xff09;寻找旋转排序…

【Ubuntu】minicom安装、配置、使用以及退出

目录 1 安装 2 配置 3 使用 4 退出 minicom是一个串口通信的工具&#xff0c;以root权限登录系统&#xff0c;可用来与串口设备通信。 1 安装 sudo apt-get install minicom 2 配置 使用如下命令进入配置界面&#xff1a; sudo minicon -s 进入配置界面后&#xff0c;…

【STM32】 TCP/IP通信协议--LwIP介绍

一、前言 TCP/IP是干啥的&#xff1f;它跟SPI、IIC、CAN有什么区别&#xff1f;它如何实现stm32的通讯&#xff1f;如何去配置&#xff1f;为了搞懂这些问题&#xff0c;查询资料可解决如下疑问&#xff1a; 1.为什么要用以太网通信? 以太网(Ethernet) 是指遵守 IEEE 802.3 …

OCR Fusion: EasyOCR/Tesseract/PaddleOCR/TrOCR/GOT

文章目录 前言一、基类 OCRExecutorBase二、EasyOCR1.安装2.模型下载3.DEMO 三、Tesseract1.安装2.使用问题3.DEMO 四、PaddleOCR1.安装2.DEMO 五、PaddleOCR&#xff08;PyTorch移植版&#xff09;1.代码整理2.DEMO 六、TrOCR1.安装2.模型下载3.DEMO 七、GOT1.安装2.模型下载3…

TCP\IP标准与OSI标准

TCP/IP 模型和 OSI 模型都是用于描述网络体系结构的模型&#xff0c;但它们的设计理念和层次结构有所不同。TCP/IP 模型更注重实际实现&#xff0c;而 OSI 模型更注重抽象和标准化。 1. OSI 模型 (Open Systems Interconnection Model) OSI 模型是一个七层模型&#xff0c;从…

UFS 3.1架构简介

整个UFS协议栈可以分为三层:应用层(UFS Application Layer(UAP)),传输层(UFS Transport Layer(UTP)),链路层(UIC InterConnect Layer(UIC))。应用层发出SCSI命令(UFS没有自己的命令使用的是简化的SCSI命令),在传输层将SCSI分装为UPIU,再经过链路层将命令发送给Devices。下…

vue3实现打字机的效果,可以换行

之前看了很多文章,效果是实现了,就是没有自动换行的效果,参考了文章写了一个,先上个效果图,卡顿是因为模仿了卡顿的效果,还是很丝滑的 目录 效果图:代码如下 效果图: ![请添加图片描述](https://i-blog.csdnimg.cn/direct/d8ef33d83dd3441a87d6d033d9e7cafa.gif 代码如下 原…

Vue(16)——Vue3.3新特性

defineOptions 在 Vue 3.3 之前&#xff0c;如果需要在 <script setup> 中设置组件名&#xff0c;通常需要在额外的 <script> 标签中使用 Options API 进行配置。defineOptions 是 Vue 3.3 版本中引入的一个宏&#xff08;macro&#xff09;&#xff0c;它主要用于…

初识Linux以及Linux的基本命令

千呼万唤始出来&#xff0c;Linux系列的文章从今天起开始不定期更新&#xff0c;闲话少叙&#xff0c;我们直接进入正题 初识Linux 这一部分我不打算给大家讲Linux的发展史啥的&#xff0c;直接从系统方面开始介绍 首先&#xff0c;我们平时用win10或win11所看到的桌面以及各…

element ui中当el-dialog需要做全屏时,.fullscreen样式修改问题

element ui 饿了么UI中el-dialog样式修改问题 场景解决方法就是&#xff1a;去掉底部样式中的scoped,然后再进行页面级样式的更改即可。 场景 最近在使用element-ui时&#xff0c;使用到了弹窗组件&#xff1a; element-ui 官网链接地址&#xff1a; element-ui 官网链接地址…

基于springboot+小程序的自习室选座与门禁管理系统(自习室1)(源码+sql脚本+视频导入教程+文档)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 1、管理员实现了首页、基础数据管理、论坛管理、公告信息管理、用户管理、座位管理等 2、用户实现了在论坛模块通过发帖与评论帖子的方式进行信息讨论&#xff0c;也能对账户进行在线充值…

数据集-目标检测系列-吸烟检测数据集 smoking cigarette >> DataBall

数据集-目标检测系列-吸烟检测数据集 smoking cigarette >> DataBall 数据集-目标检测系列-吸烟检测数据集 &#xff08;smoking cigarette&#xff09; 数据量&#xff1a;1W 数据项目地址&#xff1a; gitcode: https://gitcode.com/DataBall/DataBall-detections-…

双链表的插入删除遍历

双链表的插入操作 双链表的删除操作 双链表的遍历操作