利用ChatGPT实现的生成式人工智能自动化控制系统

 

一、引言

随着信息化与智能化时代的到来,人工智能(AI)技术迅猛发展,正在深刻地重塑各行业的运营模式。在这一背景下,生成式人工智能(Generative AI)以其卓越的创造力和广泛的应用潜力,日益成为研究的前沿。特别是在自动化控制领域,集成了生成式AI技术的系统正逐渐成为研究的焦点。

自动化控制系统是工业生产和日常生活的核心组成部分,它们通过自动化操作提升了效率和生活质量。然而,传统的系统往往要求用户具备专业技能,这限制了其普及。因此,将AI技术与自动化控制相结合,开发出更智能、更易于使用的系统,已成为研究的热点。

为此,我们特推出一种基于ChatGPT的生成式人工智能自动化控制系统。ChatGPT作为一种先进的生成式AI技术,其强大的自然语言处理和深度学习能力为自动化控制开辟了新天地。通过GPT,我们可以将用户的自然语言指令转化为具体的控制信号,实现对设备的自动化控制。这种方法简化了控制流程,降低了用户的操作难度,并提高了系统的智能化和适应性。

二、生成式人工智能自动化控制系统

(一)系统构成

融合了ChatGPT大型语言模型与自动化控制技术的生成式人工智能自动化控制系统,借助ChatGPT的自然语言处理和生成能力,将用户的指令和意图转换为精确的控制指令,以实现对各类设备和系统的自动化管理。

 

基于ChatGPT的生成式人工智能自动化控制系统结构

 

下面的五个部分共同构成了基于ChatGPT的生成式人工智能自动化控制系统的结构设计框架。该框架不仅能够实现高效、智能的自动化控制,还具备自我学习和优化的能力,能够适应各种复杂和动态的环境。

1) 输入层

输入层作为语义分析系统的门户,肩负着接收并预处理用户多样化输入的重任。它能够无缝集成语音、文本乃至图像等多种输入形式,展现出高度的灵活性与包容性。对于语音输入,借助先进的语音识别技术,输入层能将用户的语音指令无缝转化为文本,确保信息的准确传递;面对文本输入,则直接接纳并处理用户的字符序列,无需额外转换;而针对图像输入,该层通过图像识别技术从中抽取出关键文本信息,进一步拓宽了用户交互的边界。无论何种形式的输入,输入层都能将其统一转化为计算机可识别的格式,为后续语义分析奠定坚实基础,确保用户意图的精准捕捉。

2) ChatGPT处理层

ChatGPT处理层,作为系统的中枢大脑,专注于对用户输入的深度挖掘与理解。在这一层级,用户的自然语言输入经过初步处理后,被送入ChatGPT进行精细的解析与生成。ChatGPT凭借其深厚的自然语言处理功底与深度学习技术,能够敏锐捕捉用户输入中的关键词汇、语义单元乃至上下文信息,从而精准把握用户的真实意图与潜在需求。这一过程不仅体现了系统对用户意图的深刻理解,也为后续控制指令的生成提供了强有力的支撑。

3) 指令生成层

指令生成层是自动化控制系统中不可或缺的一环,其职责在于将ChatGPT处理层产出的高级控制意图转化为设备或系统可直接执行的具体控制信号。这些控制信号作为沟通系统与设备之间的桥梁,是实现自动化控制的关键。在此层级,指令生成层对ChatGPT生成的控制指令进行深入剖析,明确操作细节与参数要求,进而生成一系列精确无误的控制信号。这一过程确保了控制指令的准确无误执行,推动了自动化控制系统向更高效、更智能的方向发展。

4) 控制执行层

控制执行层作为自动化控制系统的执行终端,承担着将指令生成层输出的控制信号转化为具体、精确的操作动作的重任,确保对被控对象实现高效、精准的控制。在此层级中,模糊PID控制器作为核心组件,巧妙融合了模糊控制与PID控制的精髓,展现出卓越的适应性和鲁棒性,能够灵活应对各种复杂多变的控制挑战。当接收到控制信号时,模糊PID控制器迅速解析信号内容,明确控制目标及所需操作,并据此计算出最优控制参数,驱动执行机构精准执行,实现控制目标。

5) 学习优化层

学习优化层是自动化控制系统中不可或缺的智能引擎,它专注于从用户行为、反馈以及被控对象实时运行状态中汲取知识,通过深度学习与数据分析,不断优化ChatGPT模型,推动系统智能化水平持续提升。该层不仅收集用户的输入习惯、满意度评价及系统响应速度感知等宝贵数据,还实时追踪被控对象的运行状态,全面评估系统控制效果。基于这些数据,学习优化层能够自动调整模型参数,优化控制策略,确保系统始终保持在最佳运行状态,更好地服务于用户需求,适应复杂多变的动态环境。

 

(二)基于ChatGPT的语义分析

ChatGPT是由OpenAI开发的一种基于Transformer架构的大型语言模型,通过大规模数据集的训练,ChatGPT展现了卓越的语言生成与理解能力。它可以处理包括文本、图像和语音在内的多样化输入形式,并生成自然流畅的回复,为用户提供高质量的交互体验。更重要的是,ChatGPT能深入理解用户的意图与需求,从而提供更加精准的服务和支持。

当用户向系统输入控制信息时,如果输入形式为图像或语音,系统首先需要将这些非文本信息转换为ChatGPT能够处理的文本格式。在此基础上,ChatGPT处理层采用先进的神经语义分析技术来解读输入的控制信息,深入了解用户的具体意图与需求。为了应对语言表达的多样性和复杂性,系统采用了双编码—解码的语义分析模型。

1)双编码结合

在传统的单一语音语义表达的编码—解码架构中,编码器负责接收用户输入的控制信息,并将其转化为一个中间表示形式,即隐含层状态。然后,这一隐含层状态被传递给解码器,作为其输入的一部分。在编码器和解码器之间,引入了注意力机制,使得解码器能够关注输入序列中的不同部分,从而更有效地处理长序列数据并提高理解的准确性。

而在双编码—解码语义分析模型中,系统通过两个独立但相互协作的编码器处理不同的输入类型或特征。每个编码器分别负责提取输入数据的不同方面,然后将它们的输出整合起来,形成一个更为全面的隐含层表示。这种双编码的设计使得系统能够从多个角度理解和解析用户输入的信息,增强了系统对复杂意图的理解能力。最终,整合后的信息被送入解码器,完成从用户意图到具体控制指令的转换,确保控制指令的准确性和针对性。

通过这种方式,基于ChatGPT的语义分析不仅能够提供更加人性化的交互体验,还能在自动化控制系统中发挥重要作用,使系统能够更加智能地响应用户的多样化需求。

 

2)多语言到语义表达式的注意力模型

多语言到语义表达式的注意力模型综合了注意力机制和深度学习技术,旨在处理不同语言输入到语义表达的转换任务。该模型的设计原则主要体现在以下几个方面:

①多语言输入的预处理

模型必须具备处理多种语言输入的能力,这就要求在输入阶段进行一系列预处理步骤,比如分词、编码等。这些步骤是为了确保模型能够正确识别并理解不同语言的结构特点和语法特性。通过标准化的预处理流程,模型能够将不同语言的文本转换为统一的内部表示形式,便于后续的分析和处理。

②注意力机制的应用

注意力机制是模型的核心组件之一,其主要功能在于帮助模型在处理输入时集中注意力于关键信息,同时忽略不相关的部分。在多语言到语义表达式的转换任务中,注意力机制能够协助模型识别并聚焦于输入文本中与语义表达密切相关的关键成分。具体实现时,模型会将输入文本编码为一系列向量表示,这些向量包含了输入文本的多层次信息。接下来,模型会计算这些向量与预期语义表达式之间的注意力权重,这些权重表明了各个向量对语义表达的重要性。通过加权求和的方式,模型能够得出一个综合了关键信息的加权输入表示,这种表示更加贴合输入文本中的语义核心。

③深度学习技术的融合

在获得了加权的输入表示之后,模型利用深度学习技术,如循环神经网络(RNN)、长短期记忆网络(LSTM)或Transformer架构等,对这些表示进行进一步的编码和处理。这些网络结构能够有效捕捉输入文本中的序列信息和依赖关系,从而生成更为精确的语义表达式。通过深层次的学习,模型不仅能理解单个词汇的意义,还能把握词汇间的语义联系,确保生成的语义表达式既符合语法规范又能准确反映用户的意图。

 

3)模糊PID控制器设计优化

在基于ChatGPT的生成式人工智能自动化控制系统中,自动化控制扮演着至关重要的角色。ChatGPT的应用不仅可以增强控制系统的整体性能,还能显著提高控制效率。模糊PID控制器的设计融合了模糊控制的灵活性和PID控制的稳定性,目的是实现更精确、更高效的自动化控制。其设计原理可以概括为以下三个核心要素:

1.控制目标的明确化:首先,必须明确控制系统的目标,即系统应达到的期望状态或性能指标。这为控制系统提供了一个清晰的方向和目标。

2.模糊控制器的输入和输出变量的界定:输入变量通常涵盖系统的误差、误差变化率和累积误差等,这些变量是衡量系统当前状态与期望状态之间差异的关键指标。输出变量则是指控制力,它用于调整系统的行为,以确保系统状态尽可能接近期望状态。

3.模糊集和模糊规则的确立:模糊集的引入是为了将实际变量映射到模糊集合中,例如“高、中、低”等类别,这有助于处理控制过程中的不确定性和不精确性。模糊规则则详细描述了输入变量与输出变量之间的逻辑关系,这些规则是基于专家知识和经验制定的,目的是实现有效的控制策略。

在模糊PID控制器的设计中,模糊化过程是实现精确控制的关键环节。这一步骤涉及将输入变量转化为隶属度函数的形式,以便更细致地描述输入量的各个级别或状态。隶属度函数是一个数学工具,用于量化输入变量在不同模糊集合中的隶属程度。例如,系统误差的大小可以被模糊化为“小”、“中”或“大”等隶属度值。同样,输出变量也需要经过模糊化处理,以便生成符合预期的控制信号。

模糊化处理后,控制器将通过模糊推理机制来处理这些模糊变量。模糊推理机制根据预设的模糊规则,对模糊化的输入变量进行推理,以产生相应的模糊输出。最后,为了将模糊输出转换为具体的控制信号,还需要进行去模糊化过程。这一过程通常涉及到一个转换算法,如质心法或加权平均法,将模糊输出转换为一个明确的控制力,从而实现对系统的精确控制。

通过这种设计,模糊PID控制器能够适应各种复杂和动态的环境,提供优化的控制策略,确保自动化控制系统的高效和稳定运行。

 

模糊PID控制构成框图

 

三、仿真测试

1.语义分析基础验证

本系统通过接收用户输入的语音控制信息,首先执行语音识别与文本转换,随后依托ChatGPT处理层中先进的神经语义分析算法,深入剖析输入控制信息的深层含义。由下图可以看出,无论输入何种类型的语音控制信息,系统均能准确捕捉其核心语义,确保输出结果与原始控制信息高度一致,有力证明了本系统在语义分析方面的卓越能力。

 

系统语义分析结果

 

2.语义分析准确性量化评估

为进一步量化评估本文系统在语义分析方面的精准度,我们深入分析了语义匹配度及上下文相关交互匹配度两项关键指标。随着着系统内语义分析模型编码器数量的递增,问题匹配度虽略有下滑,从98.41%微调至97.28%,但仍稳定保持在97%以上的高水平;同时,上下文相干交互匹配度也呈现轻微下降趋势,由94.77%降低至91.25%,但始终维持在91%以上的优秀区间。这一趋势表明,即便在编码器数量增加导致计算复杂度提升的背景下,本文系统仍能保持高度的语义分析精度,充分验证了其在进行控制信息语义分析时的稳定性和高效性。

 

语义匹配度与上下文相关交互匹配度分析结果

 

3.语义分析抗干扰性测试结果

为了评估本系统在语义分析过程中对干扰的抵抗能力,我们进行了一系列的抗干扰性能测试。对于所有类型的输入控制信息,随着语义分析模型编码器数量的增加,准确率并没有表现出明显的规律性变化。在某些情况下,增加编码器数量可能会轻微提升准确率,例如文本输入在高斯噪声下的表现;而在其他情况下,准确率可能会略有下降,如图像输入在背景噪声下的情况。这一现象说明编码器数量的增加对语义分析模型抗干扰性能的影响并不显著,而模型结构和训练数据等其他因素可能起着更关键的作用。

而在高斯噪声、背景噪声和传输噪声的环境下,语义分析模型的整体准确率都保持在较高水平,这证明了模型具有出色的抗干扰性能。尽管在不同噪声类型下模型的准确率存在轻微差异,但整体波动范围较小,这表明模型对不同类型噪声具有较好的适应性。

 

语义分析的抗干扰性能分析

 

四、结语

基于ChatGPT的生成式人工智能自动化控制系统,作为自然语言处理与自动化控制技术融合的典范,正逐步展现其无与伦比的强大潜力与灵活性,为人类带来了前所未有的智能、高效与便捷控制体验。该系统横跨多个领域,从智能家居的温馨便捷到工业自动化的精密操控,再到交通运输领域的智能调度,均展现出广阔的应用前景与深远影响。此外,我们还应关注该系统在可持续发展方面的潜力。通过优化算法、降低能耗等手段,可以在实现高效控制的同时,确保系统符合环保和可持续发展的要求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/435345.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Webpack 特性探讨:CDN、分包、Tree Shaking 与热更新

文章目录 前言包准备CDN 集成代码分包Tree Shaking原理实现条件:解决 treeShaking 无效方案:示例代码: 热更新(HMR) 前言 Webpack 作为现代前端开发中的核心构建工具,提供了丰富的特性来帮助开发者优化和打…

java基础(4)类和对象

目录 1.前言 2.正文 2.1类的定义与使用 2.1.1类的定义 2.1.2类的实例化 2.1.3this引用 2.1.3.1 访问当前对象的成员变量 2.1.3.2调用当前对象的成员方法 2.1.3.3构造函数中的 this 2.1.3.4归纳this 2.2封装 2.2.1封装的定义 2.2.2访问修饰符 2.3static 2.3.1sta…

初学Vue

文章目录 简介特点 初识Vue模板语法两大类插值语法指令语法 两种数据绑定方式单项绑定(v-bind)双向绑定(v-model) 数据代理事件处理基本使用事件修饰符 键盘事件计算属性 computed 简介 一套用于构建用户界面的渐进式JavaScript框…

【面试题】软件测试实习(含答案)

软件测试实习常见面试题,主要是功能测试相关的基础问题 目录 一、软件测试基础 1、介绍一下你最近的项目,以及工作职责 2、软件项目的测试流程? 3、黑盒测试与白盒测试的区别? 4、黑盒测试常见的设计方法?怎么理解等价类方法和边界值方法 1&…

服务器几核几G几M是什么意思?如何选择?

服务器几核几G几M是什么意思?我们建站、搭建网络平台都要用到云服务器,不管在腾讯云、阿里云还是别的云服务平台选购,都会接触到服务器配置。云服务器就是把物理服务器(俗称“母鸡”),用虚拟机技术虚拟出多…

FreeRTOS学习笔记一——FreeRTOS介绍

RTOS学习笔记,主要参考正点原子教程 目录 FreeRTOS特点任务调度方式抢占式调度时间片调度 任务状态状态转换任务列表 FreeRTOS特点 实现多个任务功能划分延时函数实现任务调度高优先级抢占低优先级每个任务都有自己的栈空间 注意: 中断可以打断任意任务…

设计模式之享元(Flyweight)模式

前言 面向对象很好地解决了 “抽象” 的问题,但是不可避免的要付出一定的代价。对于通常情况来讲,面向对象的成本大都可以忽略不计。但是某些情况,面向对象所带来的成本必须谨慎处理 具体需要自己根据需求去评估 定义 “对象性能” 模式。运用…

探索基于知识图谱和 ChatGPT 结合制造服务推荐前沿

0.概述 论文地址:https://arxiv.org/abs/2404.06571 本研究探讨了制造系统集成商如何构建知识图谱来识别新的制造合作伙伴,并通过供应链多样化来降低风险。它提出了一种使用制造服务知识图谱(MSKG)提高 ChatGPT 响应准确性和完整…

探索顶级低代码开发平台,实现创新

文章盘点ZohoCreator、OutSystems等10款顶尖低代码开发平台,各平台以快速开发、集成、数据安全等为主要特点,适用于不同企业需求,助力数字化转型。 一、Zoho Creator Zoho Creator 是一个低代码开发平台,它简化了应用开发中的复杂…

小程序视频编辑SDK解决方案,轻量化视频制作解决方案

面对小程序、网页、HTML5等多样化平台,如何轻松实现视频编辑的轻量化与高效化,成为了众多开发者和内容创作者共同面临的挑战。正是洞察到这一市场需求,美摄科技推出了其领先的小程序视频编辑SDK解决方案,为创意插上翅膀&#xff0…

2024前端技术发展概况

当前前端技术呈现出多方面的发展态势,以下是详细介绍: 前端框架不断演进: React:作为流行的前端框架之一,React 依旧保持着强大的生命力。它具有高效的虚拟 DOM 机制,能够快速更新和渲染页面,极…

pdf页面尺寸裁减

1、编辑pdf 2、点击裁减页面,并在空白区域双击裁减 3、输入裁减数据:

【易上手快捷开发新框架技术】nicegui标签组件lable用法庖丁解牛深度解读和示例源代码IDE运行和调试通过截图为证

传奇开心果微博文系列 序言一、标签组件lable最基本用法示例1.在网页上显示出 Hello World 的标签示例2. 使用 style 参数改变标签样式示例 二、标签组件lable更多用法示例1. 添加按钮动态修改标签文字2. 点击按钮动态改变标签内容、颜色、大小和粗细示例代码3. 添加开关组件动…

Angular基础学习(入门 --> 入坑)

目录 一、Angular 环境搭建 二、创建Angular新项目 三、数据绑定 四、ngFor循环、ngIf、ngSwitch、[ngClass]、[ngStyle]、管道、事件、双向数据绑定--MVVM 五、DOM 操作 (ViewChild) 六、组件通讯 七、生命周期 八、Rxjs 异步数据流 九、Http …

关于vue2+uniapp+uview+vuex 私募基金项目小程序总结

1.关于权限不同tabbar处理 uniapp 实现不同用户展示不同的tabbar(底部导航栏)_uniapp tabbar-CSDN博客 但是里面还有两个问题 一个是role应该被本地存储并且初始化 第二个问题是假设我有3个角色 每个角色每个tabbar不一样的,点击tabbar时候会导致错乱 第三个问题…

Windows11安装Docker Desktop教程

目录 一.安装前置步骤 ▐ 开启虚拟化 ▐ 安装WSL2 ▐ 安装Linux环境 二.Windows上安装Docker 一.安装前置步骤 ▐ 开启虚拟化 首先确保虚拟化的开启,打开任务管理器后查看: 确保图中的虚拟化是已启用,没有开启的需要通过BIOS进行开启&…

基于php的在线租房管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…

MySQL-联合查询

1.简介 1.1为什么要使用联合查询 在数据设计时由于范式的要求,数据被拆分到多个表中,那么要查询⼀个条数据的完整信息,就 要从多个表中获取数据,如下图所⽰:要获取学⽣的基本信息和班级信息就要从学⽣表和班级表中获…

全网最全软件测试面试题(含答案解析+文档)

一、软件测试基础面试题 1、阐述软件生命周期都有哪些阶段? 常见的软件生命周期模型有哪些? 软件生命周期是指一个计算机软件从功能确定设计,到开发成功投入使用,并在使用中不断地修改、增补和完善,直到停止该软件的使用的全过程(从酝酿到…

修改Opcenter EXFN 页面超时时间(Adjust UI Session Extend Token)

如果你想修改Opcenter EXFN中页面Session的超时时间,你可以按照如下步骤修改SessionAge 这个参数: 管理员运行CMD执行以下命令 umconf -getconfig -file C:\temp\config.json如果第2步有报错,则执行步骤4;如果没有报错则执行第5步如果第2步…