04 B-树

目录

  1. 常见的搜索结构
  2. B-树概念
  3. B-树的插入分析
  4. B-树的插入实现
  5. B+树和B*树
  6. B-树的应用

1. 常见的搜索结构

种类数据格式时间复杂度
顺序查找无要求O(N)
二分查找有序O( l o g 2 N log_2N log2N)
二分搜索树无要求O(N)
二叉平衡树无要求O( l o g 2 N log_2N log2N)
哈希无要求O(1)

以上结构适合用于数据量相对不是很大,能够一次性存放在内存中,进行数据查找的场景。如果数据量很大,比如有100G数据,无法一次放进内存中,那就只能放在磁盘上了,如果放在磁盘上,有需要搜索某些数据,那么如果处理呢?那么我们可以考虑将存放关键字及其映射的数据的地址放到一个内存中的搜索树的节点中,那么要访问数据时,先取这个地址去磁盘访问数据。

在这里插入图片描述
在这里插入图片描述

使用平衡二叉搜索树的缺陷:
平衡二叉搜索树的高度是logN,这个查找次数在内存中时最快的。但是当数据都在磁盘中时,访问磁盘速度很慢,在数据量很大时,logN次的磁盘访问,是一个难以接受的结果

使用哈希表的缺陷:
哈希表的效率很高是O(1),但是一些极端场景下某个位置冲突很多,导致访问次数剧增

那如何加速对数据的访问?
1.提高IO的速度(SSD相比传统机械硬盘快了不少,但是还没有得到本质性的提升)
2.降低树的高度–多叉平衡树

2. B树概念

1970年,R.Bayer和E.mccreight提出了一种适合外查找的树,它是一种平衡的多叉树,称为B树(后面有一个B的改进版本B+树,然后有些地方的B树写的的是B-树,注意不要误读成"B减树")。一棵m阶(m>2)的B树,是一棵平衡的M路平衡搜索树,可以是空树或者满足一下性质:

1.根节点至少有两个孩子
2.每个分支节点都包含k-1个关键字和k个孩子,其中ceil(m/2) <= k <= m,ceil则是向上取整函数
3.每个叶子结点都包含k-1个关键字,其中ceil(m/2) ≤ k ≤ m
4.所有的叶子节点都在同一层
5.每个节点中的关键字从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域划分
6.每个节点的结构为:{n,A0,K1,A1,K2,A2.。。,Kn,An}其中,K(1≤i≤n)位关键字,且Ki < Ki+1 (1≤i≤n)为指向子树根节点的指针。且Ai所指子树所有节点中的关键字均小于Ki+1
n为节点中关键字的个数,满足ceil(m/2)-1≤n≤m-1

3. B-树的插入分析

为了简单起见,假设M=3,即三叉树,每个节点中存储两个数据,两个数据可以将区间分割成三个部分,因此节点应该有3个孩子,节点结构如下:
在这里插入图片描述
注意:孩子永远比数据多一个
用序列{53,139,75,49,145,36,101}构建B树的过程如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.1 结构设计

b树的节点,用n记录已经保存的数据数量,用数组保存关键字,孩子数量比关键字多一个,再用一个指针保存当前节点的父亲,方便插入

template <class K, size_t M>
struct BTreeNode
{size_t _n;  // 记录存储多少个关键字K _keys[M]; struct BTreeNode<K, M>* _subs[M + 1];  // 孩子struct BTreeNode<K, M>* _parent;  // 父亲BTreeNode(){for (size_t i = 0; i < M; i++){_keys[i] = K();_subs[i] = nullptr;}_n = 0;_subs[M] = nullptr;_parent = nullptr;}
};

B树保存一个根节点

template <class K, size_t M>
class BTree
{typedef struct BTreeNode<K, M> node;private:node* _root = nullptr;
};

3.2 查找

要实现插入,先提供一个查找关键字存不存在的功能
两个循环,内部循环用来在一个节点中查找,如果key比当前值大,key就++,如果小,就跳到它的左子树。找到返回地址和下标,找不到返回它的父节点方便插入

// 返回指针和节点中的位置
std::pair<node*, int> Find(const K& key)
{node* parent = nullptr;node* cur = _root;while (cur){// 一个节点中查找size_t i = 0;while (i < cur->_n){if (key > cur->_keys[i]){i++;}else if (key < cur->_keys[i]){break;}else{return std::make_pair(cur, i);}}parent = cur;// 往孩子跳cur = cur->_subs[i];}return std::make_pair(parent, -1);
}

在这里插入图片描述在这里插入图片描述在这里插入图片描述

插入过程总结:

1.如果树为空,直接插入新节点,该结点为树的根节点
2.树非空,找待插入元素在树中的插入位置(注意:找到的插入节点位置一定在叶子节点中)
3.检测是否找到插入位置(假设树中的key唯一,即该元素已经存在不插入)
4.按照插入排序的思想将该元素插入到找到的节点中
5.检测该结点是否满足B-树的性质:即该节点中的元素个数是否等于M,如果小于则满足
6.如果插入后节点不满足B树的性质,需要对该节点分裂

  • 申请新及诶点
  • 找到该节点的中间位置
  • 将该节点的中间位置右侧的元素以及孩子搬移到新节点中
  • 将中间位置元素以及新节点往该节点中的双亲节点中插入,即继续

7.如果向上已经分裂到根节点的位置,插入结束

4. B树的插入实现

分为两个部分,一个函数用来找到插入位置插入,一个函数进行后续的调整,分裂保证B树特征

4.1 插入数据

插入的时候走的是插入的逻辑,挪动数据的同时要挪动孩子,插入成功还要连接父亲

// 找到节点中的插入位置插入数据
void InsertKey(node* cur, const K& key, node* child)
{int end = cur->_n - 1;while (end >= 0){if (key < cur->_keys[end]){// 挪动key和它的右孩子cur->_keys[end + 1] = cur->_keys[end];cur->_subs[end + 2] = cur->_subs[end + 1];end--;}else{break;}}cur->_keys[end + 1] = key;cur->_subs[end + 2] = child;// 第一次可能为空if (child){child->_parent = cur;}cur->_n++;
}

4.2 调整

需要注意清空原数据和孩子和父亲的连接

// 插入的分裂等补充
bool Insert(const K& key)
{if (_root == nullptr){node* new_node = new node;new_node->_keys[0] = key;_root = new_node;_root->_n++;return true;}// key已经存在,不允许插入std::pair<node*, int> ret = Find(key);node* parent = ret.first;if (ret.second >= 0){return false;}// 如果没有找到,find顺便带回了要插入的叶子节点// 循环每次往cur插入,newkey和childK new_key = key;node* child = nullptr;while (1){InsertKey(parent, new_key, child);// 没满结束if (parent->_n < M){return true;}// 满了分裂node* brother = new node;size_t j = 0;// 分裂一半[mid + 1, M - 1]给兄弟size_t mid = M / 2;size_t i = mid + 1;// 拷贝key,还要拷贝孩子for (; i < M; i++){brother->_keys[j] = parent->_keys[i];brother->_subs[j] = parent->_subs[i];// 孩子不为空,更新父亲if (parent->_subs[i]){parent->_subs[i]->_parent = brother;}j++;parent->_keys[i] = K();parent->_subs[i] = nullptr;}// 还有最后一个右孩子brother->_subs[j] = parent->_subs[i];if (parent->_subs[i]){parent->_subs[i]->_parent = brother;}parent->_subs[i] = nullptr;brother->_n = j;parent->_n -= brother->_n + 1;K mid_key = parent->_keys[mid];parent->_keys[mid] = K();// 说明刚刚分裂的是头节点if (parent->_parent == nullptr){_root = new node;_root->_keys[0] = mid_key;_root->_subs[0] = parent;_root->_subs[1] = brother;_root->_n = 1;parent->_parent = _root;brother->_parent = _root;return true;}else{// 转换成往parent->parent 去插入parent->[mid] 和 brothernew_key = mid_key;child = brother;parent = parent->_parent;}}
}

4.3 B-树的简单验证

对B树中序遍历,如果得到一个有序的序列,说明插入正确。和搜索二叉树类似,先左,再根,再往右移动

void _Inorder(node* cur)
{if (cur == nullptr){return;}// 左 根 左 根 。。。 右size_t i = 0;for (; i < cur->_n; i++){_Inorder(cur->_subs[i]);  // 左子树std::cout << cur->_keys[i] << " ";  // 根}// 最后的那个右子树_Inorder(cur->_subs[i]);
}void Inorder()
{_Inorder(_root);
}

4.5 B-树的性能分析

对于一棵节点为N,度为M的B-树,查找和插入需要 l o g ( M − 1 ) N log(M-1)N log(M1)N~ l o g ( M / 2 ) N log(M/2)N log(M/2)N次比较:对于度为M的B-树,每一个节点的子节点个数为M/2 ~ M-1之间,因此树的高度应该在 l o g ( M − 1 ) N log(M-1)N log(M1)N l o g ( M / 2 ) N log(M/2)N log(M/2)N之间,在定位到该结点后,再采用二分查找的方式可以很快的定位到该元素

B-树的效率是很高的,对于N=62*1000000000个节点,如果度M为1024,则 l o g M / 2 N log_{M/2}N logM/2N <= 4,即在620亿个元素中,如果这棵树的度为1024,则需要小于4次即可定位到该结点,然后利用二分查找可以快速定位到该元素,大大减少了读取磁盘的次数

4.6 B-树的删除

学习B树的插入足够帮助理解B树的特性,删除可以参考《算法导论》和《数据局结构-殷人昆》-C++

5. B+树和B*树

B+树是B树的变形,在B树基础上优化的多路平衡搜索树,B+树的规则跟B树基本类似,但是又在B树的基础上做了以下几点改进优化:

1.分支节点的子树指针与关键字个数相同(相当于取消了最左的子树)
2.分支节点的子树指针p[i]指向关键字值大小在[k[i],k[i+1]]区间之间
3.所有叶子节点增加一个连接指针连接在一起
4.所有关键字及其映射数据都在叶子节点出现

在这里插入图片描述
B树的特性:
1.所有关键字都出现在叶子结点的链表中,且链表中的节点都是有序的
2.不可能在分支节点命中
3.分支节点相当于是叶子节点的索引,叶子节点才是存储数据的

5.2 B+树

B*树是B+树的变形,在B+树中的非跟和非叶子点再增加指向兄弟节点的指针
在这里插入图片描述
B+树的分裂
当一个节点满时,分配一个新的节点,并将原节点中1/2的数据复制到新节点,最后在父节点中增加新及诶点的指针,B+树的分裂只影响原节点和父节点,而不会影响兄弟节点,所以它不需要指向兄弟的指针

B*树的分类
当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针。所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

5.3 总结

B树:有序数组+平衡多茶树
B+树:有序数组链表+平衡多叉树
B*树:一颗丰满的,空间利用率更高的B+树

内存查找B树没有优势:
1.空间利用率低。消耗高
2.插入删除数据时,分裂和合并节点,必然挪动数据
3.虽然高度更低,但是在内存而言,和哈希和平衡搜索树还是一个量级

6. B树的应用

6.1 索引

B-树最常见的应用就是用来做索引。索引通俗的说就是为了方便用户快速找到所寻之物,比如:书籍目录可以让读者快速找到相关信息,hao123网页导航网站,为了让用户能够快速的找到有价值的分类网站,本质上就是互联网页面中的索引结构。

MySQL官方对索引的定义为:索引(index)是帮助MySQL高效获取数据的数据结构,简单来说:索引就是数据结构

当数据量很大时,为了能够方便管理数据,提高数据查询的效率,一般都会选择将数据保存到数据库,因此数据库不仅仅是帮助用户管理数据,而且数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用数据,这样就可以在这些数据结构上实现高级查找算法,该数据结构就是索引。

6.2 MySQL索引简介

mysql是目前非常流行的开源关系型数据库,不仅是免费的,可靠性高,速度也比较快,而且拥有灵活的插件式存储引擎

在这里插入图片描述
索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式不同
注意:索引是基于表的,而不是基于数据库的

6.2.1 MyISAM

MyISAM引擎是MySQL5.5.8版本之前默认的存储引擎,不支持事物,支持全文检索,使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址,其结构如下:
在这里插入图片描述

上图是以以Col1为主键,MyISAM的示意图,可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果想在Col2上建立一个辅助索引,则此索引的结构如下图所示:

在这里插入图片描述
同样也是一棵B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。MyISAM的索引方式也叫做“非聚集索引”的。

6.2.2 InnoDB

InnoDB存储引擎支持事务,其设计目标主要面向在线事务处理的应用,从MySQL数据库5.5.8版本开始,InnoDB存储引擎是默认的存储引擎。InnoDB支持B+树索引、全文索引、哈希索引。但InnoDB使用B+Tree作为索引结构时,具体实现方式却与MyISAM截然不同。第一个区别是InnoDB的数据文件本身就是索引文件。MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而InnoDB索引,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。

在这里插入图片描述

上图是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录,这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型。

第二个区别是InnoDB的辅助索引data域存储相应记录主键的值而不是地址,所有辅助索引都引用主键作为data域。
在这里插入图片描述
聚簇索引这种实现方式使得主键的搜索十分高效,但是辅助索引需要检索两变索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录,如用id和名字分别查找

B+树主键索引相比B树的优势
1.B+树所有值都在叶子,遍历很方便,方便区间查找
2.对于没有建立索引的字段,全表扫描的遍历也很方便
3.分支节点值存储key,一个分支节点空间占用更小,可以尽可能加载到内存

B树不用叶子就能找到值,B+树一定要到叶子。这是B树的优势,但是B+树高度足够低,所以差别不大

参考资料:
http://blog.codinglabs.org/articles/theory-of-mysql-index.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/435446.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

彩虹易支付最新版源码及安装教程(修复BUG+新增加订单投诉功能)

该系统也没版本号&#xff0c;此版本目前是比较新的版本&#xff0c;增加了订单投诉功能&#xff0c;和一个好看的二次元模板。 此版本是全开源版&#xff0c;无一处加密文件,系统默认是安装后是打不开的&#xff0c; 本站特别修复了BUG文件&#xff0c;在PHP7.4环境下也没问…

ISA-95制造业中企业和控制系统的集成的国际标准-(2)

ISA-95 文章目录 ISA-95ISA-95企业层和制造运营管理层信息模型一、企业层和制造运营管理层信息模型内容二、企业层和制造运营管理层信息模型分类 ISA-95企业层和制造运营管理层信息模型 ISA-95信息模型是指ISA-95制造业中企业和控制系统集成的国际标准定义了企业层和制造运营层…

二值图像的面积求取的两种MATLAB方法

一、引言 面积在数字图像处理中经常用到&#xff0c;在MATLAB中&#xff0c;计算二值图像的面积通常可以通过两种主要方法实现&#xff1a;遍历法和直接利用bwarea函数。下面将分别介绍这两种方法的原理和相应的MATLAB代码示例。 二、遍历法计算二值图像面积的原理和MATLAB代码…

Stable Diffusion绘画 | 来训练属于自己的模型:素材处理与打标篇

纵观整个模型训练流程&#xff0c;图片素材准备和打标环节占据的分量比重&#xff0c;绝对超过60%。 上一篇分享了图片素材准备&#xff0c;这一篇&#xff0c;开始对准备好的图片素材进行处理了。 素材处理 我已经收集了 霉霉 的25张图片&#xff1a; 但是&#xff0c;发现…

Goland 设置GOROOT报错 The selected directory is not a valid home for Go SDK

问题描述 将go版本从1.16升级到1.22时配置GoRoot报错了如下图问题 The selected directory is not a valid home for Go SDK起因的是我的这个goland比较老了&#xff0c;2020年的。所以需要设置下版本 解决 OK&#xff0c;说一下解决办法&#xff1a; 找到go的安装路径&am…

Linux之进程概念

作者主页&#xff1a; 作者主页 本篇博客专栏&#xff1a;Linux专栏 创作时间 &#xff1a;2024年9月28日 基本概念&#xff1a; 进程说白了其实就是一个程序的执行实例&#xff0c;正在执行的程序。 在内核层面来说&#xff0c;就是一个担当分配资源&#xff08;CPU时间…

基于大数据可视化的图书推荐及数据分析系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏&#xff1a;Java精选实战项目…

Unity开发绘画板——02.创建项目

1.创建Unity工程 我们创建一个名为 DrawingBoard 的工程&#xff0c;然后先把必要的工程目录都创建一下&#xff1a; 主要包含了一下几个文件夹&#xff1a; Scripts &#xff1a;存放我们的代码文件 Scenes &#xff1a;工程默认会创建的&#xff0c;存放场景文件 Shaders &…

8621 二分查找

**思路&#xff1a;** 1. 读取输入的元素个数 n。 2. 读取有序数组 ST。 3. 读取要查找的关键字 key。 4. 使用折半查找法&#xff08;即二分查找&#xff09;在数组 ST 中查找 key 的位置。 5. 如果找到 key&#xff0c;输出其位置&#xff1b;如果未找到&#xff0c;输出 &qu…

[Linux]:线程(二)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;Linux学习 贝蒂的主页&#xff1a;Betty’s blog 与Windows环境不同&#xff0c;我们在linux环境下需要通过指令进行各操作&…

自然语言处理实战项目:从基础到实战

自然语言处理实战项目&#xff1a;从基础到实战 自然语言处理&#xff08;Natural Language Processing, NLP&#xff09;是人工智能的重要分支&#xff0c;致力于让计算机能够理解、生成和处理人类语言。NLP 在搜索引擎、智能客服、语音助手等场景中扮演着关键角色。本文将带…

使用python进行自然语言处理的示例

程序功能 分词&#xff1a;将输入句子拆分为单词。 词性标注&#xff1a;为每个单词标注其词性。 命名实体识别&#xff1a;识别命名实体&#xff08;如人名、地名、组织等&#xff09;。 这段代码展示了如何用 nltk 进行基础的 NLP 任务&#xff0c;包括分词、词性标注和命名…

Django Web开发接口定义

Django Web 介绍 Django Web是一个Pyhton高级 Web 框架,实际上 Django 也可以做到前后端分离,即主要作为后端框架使用,不用模板渲染也是可行的。 Django Web 应用的运行流程,如下图所示: 此外,Django Web 在开发环境可以通过自带的服务器进行本地调试。但是该服务器不适…

Spring - @Import注解

文章目录 基本用法源码分析ConfigurationClassPostProcessorConfigurationClass SourceClassgetImportsprocessImports处理 ImportSelectorImportSelector 接口DeferredImportSelector 处理 ImportBeanDefinitionRegistrarImportBeanDefinitionRegistrar 接口 处理Configuratio…

从零预训练一个tiny-llama#Datawhale组队学习Task2

完整的教程请参考&#xff1a;datawhalechina/tiny-universe: 《大模型白盒子构建指南》&#xff1a;一个全手搓的Tiny-Universe (github.com) 这是Task2的学习任务 目录 Qwen-blog Tokenizer&#xff08;分词器&#xff09; Embedding&#xff08;嵌入&#xff09; RMS …

【2025】基于Django的鱼类科普网站(源码+文档+调试+答疑)

文章目录 一、基于Django的鱼类科普网站-项目介绍二、基于Django的鱼类科普网站-开发环境三、基于Django的鱼类科普网站-系统展示四、基于Django的鱼类科普网站-代码展示五、基于Django的鱼类科普网站-项目文档展示六、基于Django的鱼类科普网站-项目总结 大家可以帮忙点赞、收…

Codeforces Round 975 (Div. 2) A-C 题解

这次看到 C 题分数 1750 就开始害怕了&#xff0c;用小号打的比赛&#xff0c;一直觉得做不出来&#xff0c;最后才想到 A. Max Plus Size 题意 给你一些整数&#xff0c;选择一些涂成红色&#xff0c;两两不能相邻&#xff0c;你的得分为&#xff1a; [ 红色元素的个数 ] …

什么是 JWT?它是如何工作的?

松哥最近辅导了几个小伙伴秋招&#xff0c;有小伙伴在面小红书时遇到这个问题&#xff0c;这个问题想回答全面还是有些挑战&#xff0c;松哥结合之前的一篇旧文和大伙一起来聊聊。 一 无状态登录 1.1 什么是有状态 有状态服务&#xff0c;即服务端需要记录每次会话的客户端信…

努比亚z17努比亚NX563j原厂固件卡刷包下载_刷机ROM固件包下载-原厂ROM固件-安卓刷机固件网

努比亚z17努比亚NX563j原厂固件卡刷包下载_刷机ROM固件包下载-原厂ROM固件-安卓刷机固件网 统版本&#xff1a;官方软件作者&#xff1a;热心网友rom大小&#xff1a;911MB发布日期&#xff1a;2018-12-23 努比亚z17努比亚NX563j原厂固件卡刷包下载_刷机ROM固件包下载-原厂RO…

JVM相关的命令汇总

一、简介 虽然目前市场上有很多成熟的 JVM 可视化监控分析工具&#xff0c;但是所有的工具其实都依赖于 JDK 的接口和底层相关的命令&#xff0c;了解这些命令的使用对于在紧急情况下排查 JVM 相关的线上故障&#xff0c;会有更加直观的帮助。 下面一起来看看 JVM 常用的命令…