加油站智能视频监控预警系统(AI识别烟火打电话抽烟) Python 和 OpenCV 库

加油站作为存储和销售易燃易爆油品的场所,是重大危险源之一,随着科技的不断发展,智能视频监控预警系统在加油站的安全保障方面发挥着日益关键的作用,尤其是其中基于AI的烟火识别、抽烟识别和打电话识别功能,以及其独特的系统组网方式。

加油站重大危险源监测

(一)油品的易燃易爆性

加油站储存着大量汽油、柴油等油品,这些油品具有低闪点、易挥发的特性。一旦发生泄漏并遇到火源,就可能引发剧烈的爆炸和火灾,对周边环境、人员生命财产造成难以估量的损失。

(二)人员活动带来的风险

加油站内人员流动频繁,包括加油的顾客、工作人员等。顾客可能存在违规抽烟、打电话等危险行为,工作人员操作不当也可能引发安全事故。例如,打电话时可能产生的电火花、抽烟时的明火等,在油气浓度较高的环境下,瞬间就可能引发灾难。

(三)环境因素的影响

加油站周围的环境状况也可能影响其安全。如雷电天气可能引发雷击,周边的火灾隐患若蔓延到加油站,后果不堪设想。因此,对加油站进行全面的重大危险源监测是确保安全运营的必要前提。

加油站AI烟火识别、抽烟识别、打电话识别的功能与意义

(一)AI烟火识别

功能

基于先进的人工智能算法,智能视频监控预警系统能够精准地识别监控画面中的烟火。无论是在加油区、油罐区还是周边区域,一旦有烟火出现,系统能迅速作出反应。

意义

及时发现火灾隐患,相较于传统的人工巡检方式,AI烟火识别可以做到24小时不间断监控,大大提高了火灾预警的及时性。这对于在火灾初期进行扑救,减少损失具有不可替代的作用。

(二)抽烟识别

功能

通过对监控画面中人物的行为动作和物体特征进行分析,系统能够准确判断是否有人员在抽烟。它可以识别香烟的形状、烟雾等特征,即使在复杂的环境背景下也能准确判断。

意义

抽烟是加油站内严禁的危险行为。抽烟识别功能有效地阻止了因抽烟引发火灾的风险,保障了加油站内的安全环境,同时也对提高公众的安全意识起到了监督和教育的作用。

(三)打电话识别

功能

利用AI技术对人物手持物体和动作姿态进行分析,识别出是否有人在打电话。系统能够区分正常的手部动作和打电话的特定动作。

意义

打电话产生的电磁信号在加油站可能引发危险,这种识别功能可以避免因顾客或工作人员违规打电话而带来的安全隐患,从而确保加油站的安全运营。

以下是一个简单的使用 Python 和 OpenCV 库实现基于深度学习的图像识别(可以用于类似加油站场景下识别抽烟、打电话等行为的简单示例)的代码框架,这里以识别物体为例:

import cv2
import numpy as np# 加载预训练的深度学习模型(这里以MobileNet SSD为例)
net = cv2.dnn.readNetFromCaffe('MobileNetSSD_deploy.prototxt.txt','MobileNetSSD_deploy.caffemodel')# 类别标签
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat","bottle", "bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant", "sheep","sofa", "train", "tvmonitor"]def detect_objects(image):(h, w) = image.shape[:2]blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)net.setInput(blob)detections = net.forward()for i in np.arange(0, detections.shape[2]):confidence = detections[0, 0, i, 2]if confidence > 0.2:idx = int(detections[0, 0, i, 1])box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])(startX, startY, endX, endY) = box.astype("int")label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)cv2.rectangle(image, (startX, startY), (endX, endY),(0, 255, 0), 2)y = startY - 15 if startY - 15 > 15 else startY + 15cv2.putText(image, label, (startX, y),cv2.fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=0.5, color=(0, 255, 0), thickness=1)return image# 读取图像
image = cv2.imread('test.jpg')
result = detect_objects(image)
cv2.imshow('Object Detection', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

加油站智能视频监控预警系统组网

(一)前端监控设备

摄像头布局

在加油站的关键区域,如加油岛、油罐区、便利店门口等,合理布局高清摄像头。这些摄像头需要具备高分辨率、低照度、宽动态范围等特性,以适应不同的环境光线条件,确保能够清晰地捕捉到监控画面。

传感器配置

除了摄像头,还可以配备一些辅助的传感器,如温度传感器、烟雾传感器等。这些传感器可以与摄像头协同工作,当传感器检测到异常情况时,摄像头能够迅速对准相应区域进行重点监控。

(二)数据传输网络

有线网络

采用光纤等有线网络传输方式,保证数据传输的稳定性和高速性。有线网络能够抵抗外界干扰,确保监控视频和识别数据能够准确无误地传输到后端处理中心。

无线网络

对于一些不方便布线的区域,可以采用无线网络传输,如5G网络。无线网络具有灵活性高的特点,但需要注意信号的稳定性和安全性。

(三)后端处理中心

数据处理服务器

后端处理中心配备高性能的数据处理服务器,用于对前端传来的视频数据和传感器数据进行分析处理。服务器上运行着先进的AI识别算法软件,能够快速准确地对烟火、抽烟、打电话等行为进行识别。

预警系统

当识别到危险行为或异常情况时,预警系统会立即启动。预警方式可以包括声音报警、短信通知管理人员、在监控中心的屏幕上弹出报警画面等,以便管理人员能够及时采取措施进行处理。

加油站智能视频监控预警系统中的AI识别烟火、抽烟、打电话功能以及其合理的系统组网,为加油站的安全管理提供了全方位、多层次的保障。它不仅提高了安全管理的效率,降低了人工巡检的成本和误差,更重要的是,能够有效地预防安全事故的发生。随着技术的不断发展,未来加油站智能视频监控预警系统还将不断完善,进一步提升加油站的安全水平,确保加油站能够在安全的环境下为社会提供能源服务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/435772.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【mmengine】配置器(config)(进阶)继承与导出,命令行修改配置

一、配置文件的继承 1.1 继承机制概述 新建optimizer_cfg.py: optimizer dict(typeSGD, lr0.02, momentum0.9, weight_decay0.0001)新建runtime_cfg.py: device "cuda" gpu_ids [0, 1] batch_size 64 epochs 100 num_workers 8新建resnet50.py: _base_ […

微服务MongoDB解析部署使用全流程

目录 1、什么是MongoDB 1、非关系型数据库 2、非关系型数据库分类 3、MongoDB?bson格式什么样? 2、MongoDB的优势 3、MongoDB应用场景 4、术语 5、操作 1、安装MongoDB 1、查询镜像文件【不操作】 2、拉取镜像文件 3、创建数据挂载目录 4、启…

MySQL_连接查询

课 程 推 荐我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈虚 拟 环 境 搭 建 :&#x1…

C# 利用simd比较两个文件是否相等(高性能)

主要用到两个指令集&#xff0c;CompareEqual指令与MoveMask指令&#xff0c;因为电脑cpu原因&#xff0c;我们采用Avx2。 Avx2.CompareEqual&#xff0c;比较两个Vector256<byte>向量&#xff0c;如果元素相同返回255&#xff0c;否则返回0。 Avx2.MoveMask如果Vector…

前端工程规范-3:CSS规范(Stylelint)

样式规范工具&#xff08;StyleLint&#xff09; Stylelint 是一个灵活且强大的工具&#xff0c;适用于保持 CSS 代码的质量和一致性。结合其他工具&#xff08;如 Prettier 和 ESLint&#xff09;&#xff0c;可以更全面地保障前端代码的整洁性和可维护性。 1、安装 VSCode …

xxl-job--03--分片广播 动态分片

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 xxl-job通过分片广播模式前言1.定义什么是分片广播&#xff1a;即xxl-job调度中心发出一次调度&#xff0c;所有相关节点全部执行一次 采用分片广播调度优点 2.API介…

助农小程序|助农扶贫系统|基于java的助农扶贫系统小程序设计与实现(源码+数据库+文档)

助农扶贫系统小程序 目录 基于java的助农扶贫系统小程序设计与实现 一、前言 二、系统功能设计 三、系统实现 5.1.1 农户管理 5.1.2 用户管理 5.1.3 订单统计 5.2.1 商品信息管理 5.3.1 商品信息 5.3.2 订单信息 5.3.3 商品评价 5.3.4 商品退货 四、数据库设计 1、…

基于微信小程序的旧衣回收系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…

执行力怎么培养?

执行力怎么培养&#xff1f; 并行&#xff1a;适合在初期养成习惯&#xff0c;不抱对结果的期望天才就是强迫症&#xff1a;适合中期修身&#xff1a;适合高级 并行&#xff1a;适合在初期养成习惯&#xff0c;不抱对结果的期望 在你开始做任何事情的时候&#xff0c;不要一开…

Azure OpenAI检索增强微调:使用 GPT-4o 对 GPT-4o mini 进行微调,以适应特定领域的应用

定制是关键&#xff01; 生成式人工智能对企业最有影响力的应用之一是创建自然语言界面&#xff0c;这些界面经过定制&#xff0c;可以使用特定领域和用例数据来提供更好、更准确的响应。这意味着回答有关特定领域的问题&#xff0c;例如银行、法律和医疗领域。 我们经常谈…

二叉树深搜专题篇

目录 计算布尔二叉树的值 求根节点到叶节点数字之和 二叉树剪枝 验证二叉搜索树 二叉搜索树中第K小的元素 二叉树的所有路径 计算布尔二叉树的值 题目 思路 这道题其实是比较简单的&#xff0c;对二叉树来一次后序遍历即可&#xff0c;当遇到叶子结点直接返回叶子节点中…

OpenAI全新多模态内容审核模型上线:基于 GPT-4o,可检测文本和图像

在数字时代&#xff0c;内容安全问题愈发受到重视。9月26日&#xff0c;OpenAI 正式推出了一款全新的多模态内容审核模型&#xff0c;名为 “omni-moderation-latest”。 该模型基于最新的 GPT-4o 技术&#xff0c;能够准确地识别检测有害文本图像。这一更新将为开发者提供强大…

【Android】页面启动耗时统计流程梳理

文章基于Android 11 写在前面&#xff1a; 最近的文章都会放流程图&#xff0c;时序图之类的图片&#xff0c;解释下为什么这么做&#xff1a; 图片的好处&#xff1a; 流程清晰&#xff0c;一目了然很多代码&#xff0c;如同老太太的裹脚布&#xff0c;又臭又长。影响理解&a…

《开题报告》基于SpringBoot框架的高校专业实习管理系统开题报告的设计与实现源码++学习文档+答辩讲解视频

开题报告 研究背景 在当今高等教育日益普及与深化的背景下&#xff0c;高校专业实习作为学生将理论知识转化为实践能力、提前适应社会工作环境的重要环节&#xff0c;其重要性不言而喻。然而&#xff0c;传统的高校专业实习管理模式往往存在信息不对称、流程繁琐、效率低下、…

AWS Network Firewall - IGW方式配置只应许白名单域名出入站

参考链接 https://repost.aws/zh-Hans/knowledge-center/network-firewall-configure-domain-ruleshttps://aws.amazon.com/cn/blogs/networking-and-content-delivery/deployment-models-for-aws-network-firewall/ 1. 创建防火墙 选择防火墙的归属子网&#xff08;选择公有…

【软件工程】成本效益分析

一、成本分析目的 二、成本估算方法 三、成本效益分析方法 课堂小结 例题 选择题

生信初学者教程(十二):数据汇总

文章目录 介绍加载R包导入数据汇总表格输出结果总结介绍 在本教程中,汇总了三个肝细胞癌(HCC)的转录组数据集,分别是LIRI-JP,LIHC-US/TCGA-LIHC和GSE14520,以及一个HCC的单细胞数据集GSE149614的临床表型信息。这些数据集为科研人员提供了丰富的基因表达数据和相关的临床…

设计模式 策略模式(Strategy Pattern)

策略模式简绍 策略模式&#xff08;Strategy Pattern&#xff09;是一种行为设计模式&#xff0c;它使你能在运行时改变对象的行为。该模式定义了一系列的算法&#xff0c;并将每一个算法封装起来&#xff0c;使它们可以相互替换。策略模式让算法独立于使用它的客户而变化。 …

当前用户添加到 [uucp ]组

archlinux使用tabby 查看当前用户&#xff1a;将当前用户添加到 uucp 组验证组成员身份重新登录 /dev/ttyUSB0 设备的所有者是 root&#xff0c;而所属组是 uucp,如果您想以当前用户身份访问此设备&#xff0c;您可以将当前用户添加到 uucp 组中。 以下是将当前用户添加到 uucp…

初识C语言(三)

感兴趣的朋友们可以留个关注&#xff0c;我们共同交流&#xff0c;相互促进学习。 文章目录 前言 八、函数 九、数组 &#xff08;1&#xff09;数组的定义 &#xff08;2&#xff09;数组的下标和使用 十、操作符 &#xff08;1&#xff09;算数操作符 &#xff08;2&#xff…