数学建模--什么是数学建模?数学建模应该怎么准备?

前言

  • 这是去年底学数学建模老哥的建模课程笔记;
  • 未来本人将陆陆续续的更新数学建模相关的一些基础算法,大家可以持续关注一下;
  • 提示:数学建模只有实战才能提升,光学算法没有啥意义,也很难学的很懂。

文章目录

  • 如何分模块学习?
  • 数学建模流程
  • 阅读论文的流程
  • 问题分类
    • 评价类
    • 预测类
    • 优化类

如何分模块学习?

  • 题目备战:掌握固定模式
  • 基于模型的研究和分析
  • 摘要备战:总结归纳能力,通过看高水平论文和优秀论文
  • 问题分析:动脑能力是关键,第一步进行问题定性,然后说明如何求解这类问题
  • 模型的建立:将常见的模型进行归纳总结,形成算法库
  • 模型优缺点:对模型不足需要提前掌握,并且阐述不足

数学建模流程

在这里插入图片描述

  1. 模型准备
    • 了解问题的实际背景,明确其意义,掌握对象的各种信息
      • 数据,变量/参数
  2. 模型假设
    • 根据实际对象的特征和建模的目的,对问题进行必要简化,最重要的点之一,评委最喜欢看中点之一
      • 如预测未来十年中国人口变化, 可假设未来十年疾病、灾害对人口变化影响不大
  3. 模型建立
    • 在假设基础上,利用适当的数学工具来规划各个变量之间的关系,两大王牌:流程图,伪代码
    • 流程图:一般建立组合模型(单个模型效果不好),如:灰色预测-BP神经网络
    • 伪代码:包含输入,输出。过程
  4. 模型求解
    • 利用获取的数据资料,对模型的所有参数做出计算
    • 一般流程为:基于……数据,经行……预处理工作,得到……参数,进而得到……结果,结果如下:
  5. 模型分析
    • 对所建的模型的思路进行阐述,对所得结果进行数学分析
    • 一定要和问题相呼应
    • 一定要有表层分析和深层分析
      • 表层分析:看图说话
      • 深层分析:看图挖掘得出的
  6. 模型检验
    • 检验模型的准确性和合理性等,如:灵敏度分析(美赛最爱),误差分析

阅读论文的流程

比方说,2012年A题葡萄酒评价模型,有篇文章用了回归分析和灰色关联方法对葡 萄酒进行了评级,然后比较二者的结果,得出灰色关联的方法更加能够反映理化成 分对葡萄酒质量的影响的结论。这就是论文表面上给我们呈现的样子,但是我们就 可以多想想以下几个问题:

(1) 葡萄酒的理化成分数据是怎么一个结构?作者用了哪些数据处理方法,缺失、 异常数据怎么处理的?他为什么要这么处理?如果以后遇到类似的问题,数据分析 的时候,有没有好的步骤?

简要来说,这道题的理化指标是一个多变量多对象的二维数据表,存在异常数据用 spss验证数据功能予以去除,缺失值用插值方法补充,然后用主成分分析法进行了 降维,目的是能够减小变量个数。这样一来,数据分析的一套流程就比较清楚了。

(2) 他为什么选取了回归分析和灰色关联方法来建模?遇到这类评 价某事物的问题,一共有哪些建模方法?分别能够在什么条件下使用? 各有什么特点?

回归分析能够忽略问题机理,只从数据上分析出变量之间的相关关系, 进而得出结论;而灰色关联方法能够在机理没有完全摸清的情况下, 部分挖掘变量间更深层次的联系,更能够准确地评价葡萄酒的好坏。 在评价类问题上,我们还有TOPSIS方法,模糊综合评判等等,各有各 的特点和优势,处理的问题类型有较小的差别,大家可以自行学习。

(3)在做模型检验时,他是用什么标准来得到判断灰色关联方法比回归 分析要好的结论的?他怎么想法到这点的?遇到这种比较时能不能够想到 这一点上?

该文章直接用了评价误差率指标来判别评价好坏,并且从模型的假设、简 化等建立过程中分析出灰色关联方法更加优越的结论,于是我们在对两个模型进行优劣比较的时候,也应该从结果和建立过程分析,进而比较优劣。 从这个思路中间大家应该基本能知道,下次再遇到西瓜酒,葡萄汁,或者 电脑的评价问题数据应该怎样进行处理了,我们要类比的是数学结构,而 不是表面上这个东西是葡萄酒还是白酒,这篇论文读透了,以此为线索, 整个评价问题你都解决了。

问题分类

在这里插入图片描述

评价类

在这里插入图片描述

  • 选择合适指标
    • 系统分析法:选择什么指标(选择主要影响的)
    • 同向化处理:数据要么同降,要么同时升
    • 指标无量化处理:数据大小统一,去除单位影响
  • 权重各指标:详情看算法匹配大全

在这里插入图片描述

  • 模糊评价:可以看有无"问卷调查"

预测类

预测就是根据过去和现在估计未来,预测未来。统计预测属于预测方法研究范畴,即如何利用科学的统计方法对物的未来发展进行定量推测

在这里插入图片描述

  • 搜索和审核治疗:找数据
  • 误差分析必须要有,预测类最核心的
  • 算法详情:算法匹配表

在这里插入图片描述

优化类

优化类问题是从所有可能方案中选择最合理的方案以达到最优目标。在各种科学问题、工程问题、生产管理、社会经济问题中,人们总是希望在有限的资源条件下,用尽可能小的代价,获得最大的收获(比如保险)。

优化类问题一般的解题步骤(3步)为:

(1)首先确定决策变量,也就是需要优化的变量;

(2)然后确定目标函数,也就是优化的目的;

(3)最后确定约束条件,决策变量在达到最优状态时, 受到那些客观限制

在这里插入图片描述

  • 决策变量:对结果有直接影响的
  • 0-1规划:结果只有两个

算法的选择,详情看算法匹配大全

优化类问题中常用的数学模型和求解算法,其中包括线性规划、非线性规划、整数规划、多目标规划等。在模型求解中,对于凸优化模型,可以采用基于梯度的求解算法;对于非凸的优化模型,可以采用智能优化算法。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/435806.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于ESP8266—AT指令连接阿里云+MQTT透传数据(2)

MQTT_TX设备为发送数据的Topic,使用MQTT-fx软件实现 MQTT_RX设备为接收(订阅)数据的Topic,使用ESP8266通过AT指令实现 一、使用MQTT-fx实现发送数据 首先进入控制台,获取发送设备 “ MQTT_TX ” 的MQTT连接参数,具体具体操作如…

【Redis入门到精通五】Java如何像使用MySQL一样使用Redis(jedis安装及使用)

目录 Jedis 1.jedis是什么 2.jedis的安装配置 3.jedis的基础命令操作展示 1.set和get操作: 2.exists和del操作: 3.keys和type操作: 4. expire和ttl: Jedis Java 操作 redis 的客⼾端有很多,其中最知名的是 jedi…

Mysql 存储过程

1.需求: users表中的数据 如果在users_copy1表中存在(2各表id相等),则根据users表的数据更新users_copy1表的数据,这两个表id相等。 例子: users表数据: users_copy1表数据: 当执…

docker运行arm64架构的镜像、不同平台镜像构建

背景 Docker 允许开发者将应用及其依赖打包成一个轻量级、可移植的容器,实现“一次构建,到处运行”的目标。然而,不同的操作系统和硬件架构对容器镜像有不同的要求。例如,Linux 和 Windows 系统有不同的文件系统和系统调用&#…

单臂路由详解

目录 单臂路由概念 单臂路由实验 路由器配置 交换机配置 实验验证 基于Eth-Trunk的单臂路由 路由器配置 交换机配置 实验验证 单臂路由概念 单臂路由技术能让路由器的一个物理接口对应不同VLAN数据的实质是把物理接口分成若干个子接口,这些子接口通过封装…

需求5:增加一个按钮

在之前的几个需求中,我们逐步从修改字段到新增字段,按部就班地完成了相关工作。通过最近的文章,不难看出我目前正在处理前端的“未完成”和“已完成”按钮。借此机会,我决定趁热打铁,重新梳理一下之前关于按钮实现的需…

【CSS in Depth 2 精译_040】6.3 CSS 定位技术之:相对定位(下)—— 用纯 CSS 绘制一个三角形

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结)第二章 相对单位(已完结)第三章 文档流与盒模型(已完结)第四章 Flexbox 布局(已…

ECCV 2024 | 融合跨模态先验与扩散模型,快手处理大模型让视频画面更清晰!

计算机视觉领域顶级会议 European Conference on Computer Vision(ECCV 2024)将于9月29日至10月4日在意大利米兰召开,快手音视频技术部联合清华大学所发表的题为《XPSR: Cross-modal Priors for Diffusion-based Image Super-Resolution》——…

Visual Studio Code下载安装及汉化

官网:https://code.visualstudio.com/ 按照指示一步步操作即可: 汉化:

②EtherCAT转Modbus485RTU网关多路同步高速采集无需编程串口服务器

EtherCAT转Modbus485RTU网关多路同步高速采集无需编程串口服务器https://item.taobao.com/item.htm?ftt&id798036415719 EtherCAT 串口网关 EtherCAT 转 RS485 (接上一章) 自由协议通信步骤 (以MS-A2-1041为例) 接收与…

C++ 3 个有序点的方向(Orientation of 3 ordered points)

给定三个点 p1、p2 和 p3,任务是确定这三个点的方向。 平面中有序三重点的方向可以是 逆时针 顺时针 共线 下图显示了 (a,b,c) 的不同可能方向 如果 (p1, p2, p3) 的方向共线,则 (p3, p2, p1) 的方向也共线。 如果 (p1, p2, p3) 的方向是顺时针&a…

鸿蒙HarmonyOS开发生态

1、官网 华为开发者联盟-HarmonyOS开发者官网,共建鸿蒙生态 2、开发工具IDE下载及使用 https://developer.huawei.com/consumer/cn/ 3、使用帮助文档 4、发布到华为应用商店 文档中心

迈威通信闪耀工博会,以创新科技赋能工业自动化

昨日,在圆满落幕的第24届中国国际工业博览会上,迈威通信作为工业自动化与智慧化领域的先行者,以“创新打造新质通信,赋能工业数字化”为主题精彩亮相,向全球业界展示了我们在工业自动化领域的最新成果与创新技术。此次…

Qt的互斥量用法

目的 互斥量的概念 互斥量是一个可以处于两态之一的变量:解锁和加锁。这样,只需要一个二进制位表示它,不过实际上,常常使用一个整型量,0表示解锁,而其他所有的值则表示加锁。互斥量使用两个过程。当一个线程(或进程)…

给自己的项目(vue3)中添加 下雪/樱花飘落的背景

查看更佳效果前往我的博客, 可切换 snows_ls BLOGhttp://124.223.41.220/ 0、效果图 樱花飘落 雪花飘落 1、安装 yarn add jparticles / npm i jparticles 2、引入 import { Snow } from jparticles; // 引入粒子效果库 引入雪花效果库 3、使用 在项目中的app.…

Pygame中Sprite实现逃亡游戏4

在《Pygame中Sprite实现逃亡游戏3》中实现了玩家跳跃飞火的效果,接下来通过精灵类的碰撞检测来判断飞火是否击中玩家、飞火是否击中飞龙以及飞龙是否抓住玩家。 1 飞火是否击中玩家的判断 判断飞火是否击中玩家的代码如图1所示。 图1 判断飞火是否击中玩家的代码 …

C++入门基础知识91(实例)——实例16【求两数最小公倍数】

成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于求两数最小公倍数的相关内容&#xff01…

慢病中医药膳养生食疗管理微信小程序、基于微信小程序的慢病中医药膳养生食疗管理系统设计与实现、中医药膳养生食疗管理微信小程序的开发与应用(源码+文档+定制)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

智融-SW6003 双向移动电源IC

描述 ETA6003 是一款具有动态电源路径控制和输入电流限制功能的开关锂离子电池充电器。连接电池后,根据电池电压,DC-DC 开关稳压器会对电池进行预处理、快速充电,或者仅将系统电压 (VSYS) 调节到预设电压。它不需要外…

加油站智能视频监控预警系统(AI识别烟火打电话抽烟) Python 和 OpenCV 库

加油站作为存储和销售易燃易爆油品的场所,是重大危险源之一,随着科技的不断发展,智能视频监控预警系统在加油站的安全保障方面发挥着日益关键的作用,尤其是其中基于AI的烟火识别、抽烟识别和打电话识别功能,以及其独特…