深度学习之贝叶斯分类器

贝叶斯分类器

1 图解极大似然估计

极大似然估计的原理,用一张图片来说明,如下图所示:

在这里插入图片描述

​ 例:有两个外形完全相同的箱子,1号箱有99只白球,1只黑球;2号箱有1只白球,99只黑球。在一次实验中,取出的是黑球,请问是从哪个箱子中取出的?

​ 一般的根据经验想法,会猜测这只黑球最像是从2号箱取出,此时描述的“最像”就有“最大似然”的意思,这种想法常称为“最大似然原理”。

2 极大似然估计原理

​ 总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

​ 极大似然估计是建立在极大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

​ 由于样本集中的样本都是独立同分布,可以只考虑一类样本集 D D D,来估计参数向量 θ ⃗ \vec\theta θ 。记已知的样本集为:
D = x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n D=\vec x_{1},\vec x_{2},...,\vec x_{n} D=x 1,x 2,...,x n
似然函数(likelihood function):联合概率密度函数 p ( D ∣ θ ⃗ ) p(D|\vec\theta ) p(Dθ )称为相对于 x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n \vec x_{1},\vec x_{2},...,\vec x_{n} x 1,x 2,...,x n θ ⃗ \vec\theta θ 的似然函数。
l ( θ ⃗ ) = p ( D ∣ θ ⃗ ) = p ( x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n ∣ θ ⃗ ) = ∏ i = 1 n p ( x ⃗ i ∣ θ ⃗ ) l(\vec\theta )=p(D|\vec\theta ) =p(\vec x_{1},\vec x_{2},...,\vec x_{n}|\vec\theta )=\prod_{i=1}^{n}p(\vec x_{i}|\vec \theta ) l(θ )=p(Dθ )=p(x 1,x 2,...,x nθ )=i=1np(x iθ )
如果 θ ⃗ ^ \hat{\vec\theta} θ ^是参数空间中能使似然函数 l ( θ ⃗ ) l(\vec\theta) l(θ )最大的 θ ⃗ \vec\theta θ 值,则 θ ⃗ ^ \hat{\vec\theta} θ ^应该是“最可能”的参数值,那么 θ ⃗ ^ ​ \hat{\vec\theta}​ θ ^就是 θ \theta θ的极大似然估计量。它是样本集的函数,记作:
θ ⃗ ^ = d ( D ) = arg ⁡ max ⁡ θ ⃗ l ( θ ⃗ ) \hat{\vec\theta}=d(D)= \mathop {\arg \max}_{\vec\theta} l(\vec\theta ) θ ^=d(D)=argmaxθ l(θ )
θ ⃗ ^ ( x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n ) \hat{\vec\theta}(\vec x_{1},\vec x_{2},...,\vec x_{n}) θ ^(x 1,x 2,...,x n)称为极大似然函数估计值。

3 贝叶斯分类器基本原理

​ 贝叶斯决策论通过相关概率已知的情况下利用误判损失来选择最优的类别分类。
假设有 N N N种可能的分类标记,记为 Y = { c 1 , c 2 , . . . , c N } Y=\{c_1,c_2,...,c_N\} Y={c1,c2,...,cN},那对于样本 x \boldsymbol{x} x,它属于哪一类呢?

计算步骤如下:

step 1. 算出样本 x \boldsymbol{x} x属于第i个类的概率,即 P ( c i ∣ x ) ​ P(c_i|x)​ P(cix)

step 2. 通过比较所有的 P ( c i ∣ x ) P(c_i|\boldsymbol{x}) P(cix),得到样本 x \boldsymbol{x} x所属的最佳类别。

step 3. 将类别 c i c_i ci和样本 x \boldsymbol{x} x代入到贝叶斯公式中,得到:
P ( c i ∣ x ) = P ( x ∣ c i ) P ( c i ) P ( x ) . P(c_i|\boldsymbol{x})=\frac{P(\boldsymbol{x}|c_i)P(c_i)}{P(\boldsymbol{x})}. P(cix)=P(x)P(xci)P(ci).
​ 一般来说, P ( c i ) P(c_i) P(ci)为先验概率, P ( x ∣ c i ) P(\boldsymbol{x}|c_i) P(xci)为条件概率, P ( x ) P(\boldsymbol{x}) P(x)是用于归一化的证据因子。对于 P ( c i ) P(c_i) P(ci)可以通过训练样本中类别为 c i c_i ci的样本所占的比例进行估计;此外,由于只需要找出最大的 P ( x ∣ c i ) P(\boldsymbol{x}|c_i) P(xci),因此我们并不需要计算 P ( x ) P(\boldsymbol{x}) P(x)
​ 为了求解条件概率,基于不同假设提出了不同的方法,以下将介绍朴素贝叶斯分类器和半朴素贝叶斯分类器。

4 朴素贝叶斯分类器

​ 假设样本 x \boldsymbol{x} x包含 d d d个属性,即 x = { x 1 , x 2 , . . . , x d } \boldsymbol{x}=\{ x_1,x_2,...,x_d\} x={x1,x2,...,xd}。于是有:
P ( x ∣ c i ) = P ( x 1 , x 2 , ⋯ , x d ∣ c i ) P(\boldsymbol{x}|c_i)=P(x_1,x_2,\cdots,x_d|c_i) P(xci)=P(x1,x2,,xdci)
这个联合概率难以从有限的训练样本中直接估计得到。于是,朴素贝叶斯(Naive Bayesian,简称NB)采用了“属性条件独立性假设”:对已知类别,假设所有属性相互独立。于是有:
P ( x 1 , x 2 , ⋯ , x d ∣ c i ) = ∏ j = 1 d P ( x j ∣ c i ) P(x_1,x_2,\cdots,x_d|c_i)=\prod_{j=1}^d P(x_j|c_i) P(x1,x2,,xdci)=j=1dP(xjci)
这样的话,我们就可以很容易地推出相应的判定准则了:
h n b ( x ) = arg ⁡ max ⁡ c i ∈ Y P ( c i ) ∏ j = 1 d P ( x j ∣ c i ) h_{nb}(\boldsymbol{x})=\mathop{\arg \max}_{c_i\in Y} P(c_i)\prod_{j=1}^dP(x_j|c_i) hnb(x)=argmaxciYP(ci)j=1dP(xjci)
条件概率 P ( x j ∣ c i ) ​ P(x_j|c_i)​ P(xjci)的求解

如果 x j x_j xj是标签属性,那么我们可以通过计数的方法估计 P ( x j ∣ c i ) P(x_j|c_i) P(xjci)
P ( x j ∣ c i ) = P ( x j , c i ) P ( c i ) ≈ # ( x j , c i ) # ( c i ) P(x_j|c_i)=\frac{P(x_j,c_i)}{P(c_i)}\approx\frac{\#(x_j,c_i)}{\#(c_i)} P(xjci)=P(ci)P(xj,ci)#(ci)#(xj,ci)
其中, # ( x j , c i ) \#(x_j,c_i) #(xj,ci)表示在训练样本中 x j x_j xj c i c_{i} ci共同出现的次数。

如果 x j ​ x_j​ xj是数值属性,通常我们假设类别中 c i ​ c_{i}​ ci的所有样本第 j ​ j​ j个属性的值服从正态分布。我们首先估计这个分布的均值 μ ​ μ​ μ和方差 σ ​ σ​ σ,然后计算 x j ​ x_j​ xj在这个分布中的概率密度 P ( x j ∣ c i ) ​ P(x_j|c_i)​ P(xjci)

5 举例理解朴素贝叶斯分类器

使用经典的西瓜训练集如下:

编号色泽根蒂敲声纹理脐部触感密度含糖率好瓜
1青绿蜷缩浊响清晰凹陷硬滑0.6970.460
2乌黑蜷缩沉闷清晰凹陷硬滑0.7740.376
3乌黑蜷缩浊响清晰凹陷硬滑0.6340.264
4青绿蜷缩沉闷清晰凹陷硬滑0.6080.318
5浅白蜷缩浊响清晰凹陷硬滑0.5560.215
6青绿稍蜷浊响清晰稍凹软粘0.4030.237
7乌黑稍蜷浊响稍糊稍凹软粘0.4810.149
8乌黑稍蜷浊响清晰稍凹硬滑0.4370.211
9乌黑稍蜷沉闷稍糊稍凹硬滑0.6660.091
10青绿硬挺清脆清晰平坦软粘0.2430.267
11浅白硬挺清脆模糊平坦硬滑0.2450.057
12浅白蜷缩浊响模糊平坦软粘0.3430.099
13青绿稍蜷浊响稍糊凹陷硬滑0.6390.161
14浅白稍蜷沉闷稍糊凹陷硬滑0.6570.198
15乌黑稍蜷浊响清晰稍凹软粘0.3600.370
16浅白蜷缩浊响模糊平坦硬滑0.5930.042
17青绿蜷缩沉闷稍糊稍凹硬滑0.7190.103

对下面的测试例“测1”进行 分类:

编号色泽根蒂敲声纹理脐部触感密度含糖率好瓜
测1青绿蜷缩浊响清晰凹陷硬滑0.6970.460

首先,估计类先验概率 P ( c j ) P(c_j) P(cj),有
P ( 好瓜 = 是 ) = 8 17 = 0.471 P ( 好瓜 = 否 ) = 9 17 = 0.529 \begin{align} &P(好瓜=是)=\frac{8}{17}=0.471 \newline &P(好瓜=否)=\frac{9}{17}=0.529 \end{align} P(好瓜=)=178=0.471P(好瓜=)=179=0.529
然后,为每个属性估计条件概率(这里,对于连续属性,假定它们服从正态分布)
P 青绿 ∣ 是 = P (色泽 = 青绿 ∣ 好瓜 = 是) = 3 8 = 0.375 P_{青绿|是}=P(色泽=青绿|好瓜=是)=\frac{3}{8}=0.375 P青绿=P(色泽=青绿好瓜=是)=83=0.375

P 青绿 ∣ 否 = P (色泽 = 青绿 ∣ 好瓜 = 否) = 3 9 ≈ 0.333 P_{青绿|否}=P(色泽=青绿|好瓜=否)=\frac{3}{9}\approx0.333 P青绿=P(色泽=青绿好瓜=否)=930.333

P 蜷缩 ∣ 是 = P (根蒂 = 蜷缩 ∣ 好瓜 = 是) = 5 8 = 0.625 P_{蜷缩|是}=P(根蒂=蜷缩|好瓜=是)=\frac{5}{8}=0.625 P蜷缩=P(根蒂=蜷缩好瓜=是)=85=0.625

P 蜷缩 ∣ 否 = P (根蒂 = 蜷缩 ∣ 好瓜 = 否) = 3 9 = 0.333 P_{蜷缩|否}=P(根蒂=蜷缩|好瓜=否)=\frac{3}{9}=0.333 P蜷缩=P(根蒂=蜷缩好瓜=否)=93=0.333

P 浊响 ∣ 是 = P (敲声 = 浊响 ∣ 好瓜 = 是) = 6 8 = 0.750 P_{浊响|是}=P(敲声=浊响|好瓜=是)=\frac{6}{8}=0.750 P浊响=P(敲声=浊响好瓜=是)=86=0.750

P 浊响 ∣ 否 = P (敲声 = 浊响 ∣ 好瓜 = 否) = 4 9 ≈ 0.444 P_{浊响|否}=P(敲声=浊响|好瓜=否)=\frac{4}{9}\approx 0.444 P浊响=P(敲声=浊响好瓜=否)=940.444

P 清晰 ∣ 是 = P (纹理 = 清晰 ∣ 好瓜 = 是) = 7 8 = 0.875 P_{清晰|是}=P(纹理=清晰|好瓜=是)=\frac{7}{8}= 0.875 P清晰=P(纹理=清晰好瓜=是)=87=0.875

P 清晰 ∣ 否 = P (纹理 = 清晰 ∣ 好瓜 = 否) = 2 9 ≈ 0.222 P_{清晰|否}=P(纹理=清晰|好瓜=否)=\frac{2}{9}\approx 0.222 P清晰=P(纹理=清晰好瓜=否)=920.222

P 凹陷 ∣ 是 = P (脐部 = 凹陷 ∣ 好瓜 = 是) = 6 8 = 0.750 P_{凹陷|是}=P(脐部=凹陷|好瓜=是)=\frac{6}{8}= 0.750 P凹陷=P(脐部=凹陷好瓜=是)=86=0.750

P 凹陷 ∣ 否 = P (脐部 = 凹陷 ∣ 好瓜 = 否) = 2 9 ≈ 0.222 P_{凹陷|否}=P(脐部=凹陷|好瓜=否)=\frac{2}{9} \approx 0.222 P凹陷=P(脐部=凹陷好瓜=否)=920.222

P 硬滑 ∣ 是 = P (触感 = 硬滑 ∣ 好瓜 = 是) = 6 8 = 0.750 P_{硬滑|是}=P(触感=硬滑|好瓜=是)=\frac{6}{8}= 0.750 P硬滑=P(触感=硬滑好瓜=是)=86=0.750

P 硬滑 ∣ 否 = P (触感 = 硬滑 ∣ 好瓜 = 否) = 6 9 ≈ 0.667 P_{硬滑|否}=P(触感=硬滑|好瓜=否)=\frac{6}{9} \approx 0.667 P硬滑=P(触感=硬滑好瓜=否)=960.667

ρ 密度: 0.697 ∣ 是 = ρ (密度 = 0.697 ∣ 好瓜 = 是) = 1 2 π × 0.129 e x p ( − ( 0.697 − 0.574 ) 2 2 × 0.12 9 2 ) ≈ 1.959 \begin{aligned} \rho_{密度:0.697|是}&=\rho(密度=0.697|好瓜=是)\\&=\frac{1}{\sqrt{2 \pi}\times0.129}exp\left( -\frac{(0.697-0.574)^2}{2\times0.129^2}\right) \approx 1.959 \end{aligned} ρ密度:0.697∣=ρ(密度=0.697∣好瓜=是)=2π ×0.1291exp(2×0.1292(0.6970.574)2)1.959

ρ 密度: 0.697 ∣ 否 = ρ (密度 = 0.697 ∣ 好瓜 = 否) = 1 2 π × 0.195 e x p ( − ( 0.697 − 0.496 ) 2 2 × 0.19 5 2 ) ≈ 1.203 \begin{aligned} \rho_{密度:0.697|否}&=\rho(密度=0.697|好瓜=否)\\&=\frac{1}{\sqrt{2 \pi}\times0.195}exp\left( -\frac{(0.697-0.496)^2}{2\times0.195^2}\right) \approx 1.203 \end{aligned} ρ密度:0.697∣=ρ(密度=0.697∣好瓜=否)=2π ×0.1951exp(2×0.1952(0.6970.496)2)1.203

ρ 含糖: 0.460 ∣ 是 = ρ (密度 = 0.460 ∣ 好瓜 = 是) = 1 2 π × 0.101 e x p ( − ( 0.460 − 0.279 ) 2 2 × 0.10 1 2 ) ≈ 0.788 \begin{aligned} \rho_{含糖:0.460|是}&=\rho(密度=0.460|好瓜=是)\\&=\frac{1}{\sqrt{2 \pi}\times0.101}exp\left( -\frac{(0.460-0.279)^2}{2\times0.101^2}\right) \approx 0.788 \end{aligned} ρ含糖:0.460∣=ρ(密度=0.460∣好瓜=是)=2π ×0.1011exp(2×0.1012(0.4600.279)2)0.788

ρ 含糖: 0.460 ∣ 否 = ρ (密度 = 0.460 ∣ 好瓜 = 是) = 1 2 π × 0.108 e x p ( − ( 0.460 − 0.154 ) 2 2 × 0.10 8 2 ) ≈ 0.066 \begin{aligned} \rho_{含糖:0.460|否}&=\rho(密度=0.460|好瓜=是)\\&=\frac{1}{\sqrt{2 \pi}\times0.108}exp\left( -\frac{(0.460-0.154)^2}{2\times0.108^2}\right) \approx 0.066 \end{aligned} ρ含糖:0.460∣=ρ(密度=0.460∣好瓜=是)=2π ×0.1081exp(2×0.1082(0.4600.154)2)0.066

于是有
P ( 好瓜 = 是 ) × P 青绿 ∣ 是 × P 蜷缩 ∣ 是 × P 浊响 ∣ 是 × P 清晰 ∣ 是 × P 凹陷 ∣ 是 × P 硬滑 ∣ 是 × p 密度: 0.697 ∣ 是 × p 含糖: 0.460 ∣ 是 ≈ 0.063 P ( 好瓜 = 否 ) × P 青绿 ∣ 否 × P 蜷缩 ∣ 否 × P 浊响 ∣ 否 × P 清晰 ∣ 否 × P 凹陷 ∣ 否 × P 硬滑 ∣ 否 × p 密度: 0.697 ∣ 否 × p 含糖: 0.460 ∣ 否 ≈ 6.80 × 1 0 − 5 \begin{align} P(&好瓜=是)\times P_{青绿|是} \times P_{蜷缩|是} \times P_{浊响|是} \times P_{清晰|是} \times P_{凹陷|是}\newline &\times P_{硬滑|是} \times p_{密度:0.697|是} \times p_{含糖:0.460|是} \approx 0.063 \newline\newline P(&好瓜=否)\times P_{青绿|否} \times P_{蜷缩|否} \times P_{浊响|否} \times P_{清晰|否} \times P_{凹陷|否}\newline &\times P_{硬滑|否} \times p_{密度:0.697|否} \times p_{含糖:0.460|否} \approx 6.80\times 10^{-5} \end{align} P(P(好瓜=)×P青绿×P蜷缩×P浊响×P清晰×P凹陷×P硬滑×p密度:0.697∣×p含糖:0.460∣0.063好瓜=)×P青绿×P蜷缩×P浊响×P清晰×P凹陷×P硬滑×p密度:0.697∣×p含糖:0.460∣6.80×105

由于 0.063 > 6.80 × 1 0 − 5 0.063>6.80\times 10^{-5} 0.063>6.80×105,因此,朴素贝叶斯分类器将测试样本“测1”判别为“好瓜”。

6 半朴素贝叶斯分类器

​ 朴素贝叶斯采用了“属性条件独立性假设”,半朴素贝叶斯分类器的基本想法是适当考虑一部分属性间的相互依赖信息。独依赖估计(One-Dependence Estimator,简称ODE)是半朴素贝叶斯分类器最常用的一种策略。顾名思义,独依赖是假设每个属性在类别之外最多依赖一个其他属性,即:
P ( x ∣ c i ) = ∏ j = 1 d P ( x j ∣ c i , p a j ) P(\boldsymbol{x}|c_i)=\prod_{j=1}^d P(x_j|c_i,{\rm pa}_j) P(xci)=j=1dP(xjci,paj)
其中 p a j pa_j paj为属性 x i x_i xi所依赖的属性,成为 x i x_i xi的父属性。假设父属性 p a j pa_j paj已知,那么可以使用下面的公式估计 P ( x j ∣ c i , p a j ) P(x_j|c_i,{\rm pa}_j) P(xjci,paj)
P ( x j ∣ c i , p a j ) = P ( x j , c i , p a j ) P ( c i , p a j ) P(x_j|c_i,{\rm pa}_j)=\frac{P(x_j,c_i,{\rm pa}_j)}{P(c_i,{\rm pa}_j)} P(xjci,paj)=P(ci,paj)P(xj,ci,paj)

有任何其他有关人工智能学习或GPT共享号独享号问题,欢迎私聊咨询

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/436035.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9_25_对话框

QColorDialog(调色板对话框) void MainWindow::on_pushButton_clicked() { // //创建一个调色板对话框 // QColorDialog* dialog new QColorDialog(this); // //设置调色板对话框的初始值,不调整默认是白色 // dialog->setCurrentColor(…

华大HC32F448的FreeRTOS移植

为什么要移植FreeRTOS? 目前的程序只是前后台查询方式的架构,有些场合更适用FreeRTOS(免费使用)。 下载地址: 下载 FreeRTOS - FreeRTOS™ 相关知识入门: FreeRTOS™ - FreeRTOS™ (网址) FreeRTOSv9.0.0文件夹…

SysML图例-悬架作动器(Suspension Aactuator)

DDD领域驱动设计批评文集>> 《软件方法》强化自测题集>> 《软件方法》各章合集>>

Java 如何从图片上提取文字

生活中我们可能会遇到想从图片上直接复制上边的文字&#xff0c;该如何获取呢&#xff0c;接下来看看如何使用Java程序实现从图片中读取文字。 实现过程 1、引入Tess4J 依赖 <!--Tess4J 依赖--> <dependency><groupId>net.sourceforge.tess4j</groupId…

Java基础——十二、容器

十二、容器 在Java中&#xff0c;容器(也称为集合)是处理数据集合的核心组件。深入理解Java容器对于处理大规模数据、提高代码效率和编写高性能程序至关重要。Java中提供了许多容器类&#xff0c;这些类位于java.util包中&#xff0c;分为两类&#xff1a;Collection和Map。 …

itc保伦股份智慧高校整体解决方案推动教育强国、科技强国、人才强国建设!

党的二十大报告指出&#xff0c;要“统筹职业教育、高等教育、继续教育协同创新&#xff0c;推进职普融通、产教融合、科教融汇&#xff0c;优化职业教育类型定位”。itc积极响应高校人才培养相关政策要求&#xff0c;基于互联网、物联网、大数据、AI等技术&#xff0c;面向老师…

2024/9/30 英语每日一段

The British Academy has created three high-profile awards to sit alongside the trophies it hands out to adult television shows--going some way, it is hoped, to replace Bafta’s abandoned children’s TV awards event. “Children’s programme-making has been …

2024重生之回溯数据结构与算法系列学习(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】

欢迎各位彦祖与热巴畅游本人专栏与博客 你的三连是我最大的动力 以下图片仅代表专栏特色 专栏跑道一 ➡️ MYSQL REDIS Advance operation 专栏跑道二➡️ 24 Network Security -LJS ​ ​ ​ 专栏跑道三 ➡️HCIP&#xff1b;H3C-SE;CCIP——LJS[华为、华三、思科高级网络]…

雷池 WAF 如何配置才能正确获取到源 IP

经常有大哥反馈说雷池攻击日志里显示的 IP 有问题。 这里我来讲一下为什么一些情况下雷池显示的攻击 IP 会有问题。 问题说明 默认情况下&#xff0c;雷池会通过 HTTP 连接的 Socket 套接字读取客户端 IP。在雷池作为最外层网管设备的时候这没有问题&#xff0c;雷池获取到的…

搭建高效知识库:教培机构数字教学的关键一步

在数字化时代&#xff0c;教育培训行业正经历着前所未有的变革。随着在线教育的兴起和个性化学习需求的增长&#xff0c;构建一个高效、易用的知识库已成为教培机构提升教学质量、优化学习体验、增强竞争力的关键一步。本文将深入探讨构建高效知识库的重要性&#xff0c;以及如…

css 下拉框展示:当hover的时候展示下拉框 z-index的用法解释

代码如下&#xff1a; <template><div class"outer"><div class"left"></div><div class"aTest2"><div class"box">显示方框</div><div class"aTest3"></div></…

前端大模型入门:实战篇之Vue3+Antdv+transformers+本地模型实现增强搜索

本文将之前的文章&#xff0c;实现一个场景的实战应用&#xff0c;包含代码等内容。利用纯前端实现增强的列表搜索&#xff0c;抛弃字符串匹配&#xff0c;目标是使用番茄关键字可以搜索到西红柿 1 准备工作 1.1 了解llm和web开发 web端的ai开发参考 前端大模型入门&#xff…

书生大模型实战(从入门到进阶)L3-彩蛋岛-InternLM 1.8B 模型 Android 端侧部署实践

目录 1 环境准备 1.1 安装rust 1.2 安装Android Studio 1.3 设置环境变量 2 转换模型 2.1 安装mlc-llm 2.2 (可选)转换参数 2.3 (可选)生成配置 2.4 (可选)上传到huggingface 2.5 (可选) 测试转换的模型 3 打包运行 3.1 修改配置文件 3.2 运行打包命令 3.3 创建签…

【C++打怪之路Lv4】-- 类和对象(中)

&#x1f308; 个人主页&#xff1a;白子寰 &#x1f525; 分类专栏&#xff1a;C打怪之路&#xff0c;python从入门到精通&#xff0c;数据结构&#xff0c;C语言&#xff0c;C语言题集&#x1f448; 希望得到您的订阅和支持~ &#x1f4a1; 坚持创作博文(平均质量分82)&#…

【注册/登录安全分析报告:孔夫子旧书网】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…

Windows环境Apache httpd 2.4 web服务器加载PHP8:Hello,world!

Windows环境Apache httpd 2.4 web服务器加载PHP8&#xff1a;Hello&#xff0c;world&#xff01; &#xff08;1&#xff09;首先需要安装apache httpd 2.4 web服务器&#xff1a; Windows安装启动apache httpd 2.4 web服务器-CSDN博客文章浏览阅读222次&#xff0c;点赞5次&…

快速实现AI搜索!Fivetran 支持 Milvus 作为数据迁移目标

Fivetran 现已支持 Milvus 向量数据库作为数据迁移的目标&#xff0c;能够有效简化 RAG 应用和 AI 搜索中数据源接入的流程。 数据是 AI 应用的支柱&#xff0c;无缝连接数据是充分释放数据潜力的关键。非结构化数据对于企业搜索和检索增强生成&#xff08;RAG&#xff09;聊天…

python14_运算符复合赋值

复合赋值缩写 A 7 B 3 C "hello" D "world" E True F False# 加法赋值运算符,7 3 10 def add1(a, b):a b # 等同于a a breturn a# 字符串加法赋值运算符,hello world helloworld def add2(c, d):c d # 等同于字符串拼接,c c dreturn c# …

个人网站介绍和部署(开源)

前言&#xff1a; 大家好&#xff0c;我是神的孩子都在歌唱&#xff0c;这是我csdn的博客 , 这是我做的一个神唱网站项目&#xff0c;专门是为了满足自己的需求写的&#xff0c;需要什么就做什么&#xff0c;代码完全开源github&#xff0c;含有安装部署教程&#xff0c;此项目…

探索私有化聊天软件:即时通讯与音视频技术的结合

在数字化转型的浪潮中&#xff0c;企业对于高效、安全、定制化的通讯解决方案的需求日益迫切。鲸信&#xff0c;作为音视频通信技术的佼佼者&#xff0c;凭借其强大的即时通讯与音视频SDK&#xff08;软件开发工具包&#xff09;结合能力&#xff0c;为企业量身打造了私有化聊天…