OPENCV判断图像中目标物位置及多目标物聚类

文章目录


在最近的项目中,又碰到一个有意思的问题需要通过图像算法来解决。就是显微拍摄的到的医疗图像中,有时候目标物比较偏,也就是在图像的比较偏的位置,需要通过移动样本,将目标物置于视野正中央,然后再次进行拍摄。

就类似于下面的图像:

基于这个需求,在图像上就需要使用图像算法进行判断(没有必要使用深度网络的时候就不要用,太浪费资源了)。

对于上面的图像,基本的处理逻辑是:

  1. 因为目标物是细胞,也就是图中的一个一个的圈圈,需求就是要让尽可能多的细胞位于图像正中央。
  2. 目标物的粘连比较少,所以基于阈值分割的基本逻辑应该是可以将所需要的目标物提取出来(这一块在python的opencv操作记录11——阈值分割这一篇已经讲过了)。
  3. 分割完之后再通过opencv提取轮廓的方法将轮廓提取出来。
  4. 提取完轮廓之后,对每个轮廓求外接矩形。
  5. 利用业务特性对相应的轮廓做一些过滤操作。
  6. 将多个矩形做一个聚类,这里可以有多种聚类方案,可以先聚类再筛选,也可以根据某个逻辑确定一个质心,然后再根据这个质心再做聚类。
  7. 然后就是调参工作了。

我自己的代码为:

int getCenter(cv::Mat img, cv::Rect& resultRect)
{cv::cvtColor(img, img, cv::COLOR_RGB2GRAY);// 阈值分割cv::threshold(img, img, 50, 255, cv::THRESH_BINARY);// 提取轮廓std::vector<cv::Mat> contours;cv::findContours(img, contours, cv::RETR_LIST, cv::CHAIN_APPROX_NONE);// 逐步聚类的方法std::vector<float> xs, ys;// 初始化质心float centroid_x = 0.0f, centroid_y = 0.0f;// 找到第一个质心,我这里是使用面积最大的作为第一个质心,代码没有贴上来int maxIndex = 0;float maxSocre = 0.0f;// 迭代计算质心for (int i = 0; i < contours.size(); i++){score = cv::contourArea(contours[i]);// 判断是一个有效区域if (score > threshold_score){cv::Rect rect = cv::boundingRect(contours[i]);// 判断是否离中心比较远, 第一次不做判断if (abs(rect.x + (rect.width / 2) - centroid_x) > centroidThresholdX){continue;}if (abs(rect.y + (rect.height / 2) - centroid_y) > centroidThresholdY){continue;}// 纳入下一次的质心计算xs.push_back(rect.x + rect.width / 2);ys.push_back(rect.y + rect.height / 2);float tempCenterX = 0.0f;for (int x = 0; x < xs.size(); x++){tempCenterX += xs[x];}centroid_x = tempCenterX / xs.size();float tempCenterY = 0.0f;for (int y = 0; y < ys.size(); y++){tempCenterY += ys[y];}centroid_y = tempCenterY / ys.size();}}for(int z = 0; z < xs.size(); z++){ if (xs[z] < minX){minX = xs[z];}if (xs[z] > maxX){maxX = xs[z];}if (ys[z] < minY){minY = ys[z];}if (ys[z] > maxY){maxY = ys[z];}}std::cout << "maxX:" << maxX << "minX:" << minX << "maxY:" << maxY << "minY:" << minY << std::endl;resultRect.x = minX;resultRect.y = minY;resultRect.width = maxX - minX;resultRect.height = maxY - minY;return 0;
}

最后的结果是:

调整的距离就是这个矩形的中央到整个图像的中央坐标了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/436287.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

unity一键注释日志和反注释日志

开发背景&#xff1a;游戏中日志也是很大的开销&#xff0c;虽然有些日志不打印但是毕竟有字符串的开销&#xff0c;甚至有字符串拼接的开销&#xff0c;有些还有装箱和拆箱的开销&#xff0c;比如Debug.Log(1) 这种 因此需要注释掉&#xff0c;当然还需要提供反注释的功能&am…

通信工程学习:什么是MAC媒体接入控制

MAC&#xff1a;媒体接入控制 MAC&#xff08;Medium Access Control&#xff09;&#xff0c;即媒体接入控制&#xff0c;是计算机网络中数据链路层的一个重要组成部分&#xff0c;负责协调多个发送和接收站点对一个共享传输媒体的占用。以下是关于MAC的详细解释&#xff1a; …

闭源与开源嵌入模型比较以及提升语义搜索效果的技术探讨

上图为执行语义搜索前的聚类演示 &#xff0c;嵌入技术是自然语言处理的核心组成部分。虽然嵌入技术的应用范围广泛&#xff0c;但在检索应用中的语义搜索仍是其最常见的用途之一。 尽管知识图谱等可以提升检索的准确率和效率&#xff0c;但标准向量检索技术仍然具有其实用价值…

实战笔记:Vue2项目Webpack 3升级到Webpack 4的实操指南

在Web开发领域&#xff0c;保持技术的更新是非常重要的。随着前端构建工具的快速发展&#xff0c;Webpack已经更新到5.x版本&#xff0c;如果你正在使用Vue2项目&#xff0c;并且还在使用Webpack 3&#xff0c;那么是时候考虑升级一下Webpack了。我最近将我的Vue2项目从Webpack…

MicoZone-Maven

一、理论 Maven 是 Apache 软件基金会组织维护的一款专门为 Java 项目提供项目构建和依赖管理支持的工具。 通过Maven管理依赖的优势&#xff1a; 1、通过在pom.xml中指定jar包坐标即可自动从仓库下载依赖 2、如果jar包存在子依赖会自动下载子依赖包 3、如果jar包之间存在冲突…

【初阶数据结构】详解插入排序 希尔排序(内含排序的概念和意义)

文章目录 前言1. 排序的概念及其应用1.1 排序的概念1.2 排序的应用 2. 插入排序2.1 基本思想2.2 插入排序的代码实现2.3 插入排序算法总结 3. 希尔排序3.1 基本思想3.2 希尔排序的代码实现3.3 希尔排序的特征总结 前言 初级数据结构系列已经进入到了排序的部分了。相信大家听到…

TCP CUBIC 曲线对 BIC 折线的拟合

bic 旨在对 reno 改进&#xff0c;用二分逼近替换线性遍历逼近&#xff0c;时间规模从 O ( W m a x ) O(W_{max}) O(Wmax​) 下降到 O ( ln ⁡ W m a x ) O(\ln {W_{max}}) O(lnWmax​)&#xff0c;这是本质&#xff0c;而 cubic 可以看作对 bic 的 bugfix&#xff0c;解除了…

【Iceberg分析】调研Iceberg中表的原地演变

调研Iceberg中表的原地演变 文章目录 调研Iceberg中表的原地演变原生非分区表文件关系图表的原地演变之表schema演变新增字段new_column文件关系变化图为新增字段写入数据文件关系变化图删除新增字段文件关系变化图新增字段new_column2文件关系变化图删除数据文件关系变化图 原…

Spring MVC__入门

目录 一、SpringMVC简介1、什么是MVC2、什么是SpringMVC 二、Spring MVC实现原理2.1核心组件2.2工作流程 三、helloworld1、开发环境2、创建maven工程3、配置web.xml4、创建请求控制器5、创建springMVC的配置文件6、测试HelloWorld7、总结 一、SpringMVC简介 1、什么是MVC MV…

强化学习-python案例

强化学习是一种机器学习方法&#xff0c;旨在通过与环境的交互来学习最优策略。它的核心概念是智能体&#xff08;agent&#xff09;在环境中采取动作&#xff0c;从而获得奖励或惩罚。智能体的目标是最大化长期奖励&#xff0c;通过试错的方式不断改进其决策策略。 在强化学习…

Linux操作系统中MongoDB

1、什么是MongoDB 1、非关系型数据库 NoSQL&#xff0c;泛指非关系型的数据库。随着互联网web2.0网站的兴起&#xff0c;传统的关系数据库在处理web2.0网站&#xff0c;特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心&#xff0c;出现了很多难以克服的问…

sysbench 命令:跨平台的基准测试工具

一、命令简介 sysbench 是一个跨平台的基准测试工具&#xff0c;用于评估系统性能&#xff0c;包括 CPU、内存、文件 I/O、数据库等性能。 ‍ 比较同类测试工具 bench.sh 在上文 bench.sh&#xff1a;Linux 服务器基准测试中介绍了 bench.sh 一键测试脚本&#xff0c;它对…

曲线图异常波形检测系统源码分享

曲线图异常波形检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Comput…

华为OD机试 - 最长元音子串的长度(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试真题&#xff08;Python/JS/C/C&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加入华为OD刷题交流群&#xff0c;…

Redis入门第三步:Redis事务处理

欢迎继续跟随《Redis新手指南&#xff1a;从入门到精通》专栏的步伐&#xff01;在本文中&#xff0c;我们将探讨Redis的事务处理机制。了解如何使用事务来保证一系列操作的原子性和一致性&#xff0c;这对于构建可靠的应用程序至关重要 1 什么是Redis事务&#x1f340; ​ R…

解锁数据宝藏:AI驱动搜索工具,让非结构化数据“说话

哈哈,说起这个 AI 搜索演示啊,那可真是个有意思的话题!非结构化数据,这家伙虽然难搞,但价值却是杠杠的。今天呢,咱就好好聊聊怎么借助 Fivetran 和 Milvus,快速搭建一个 AI 驱动的搜索工具,让企业能从那些乱七八糟的数据里淘到金子! 一、非结构化数据的挑战与机遇 首…

堆【数据结构C语言版】【 详解】

目录-笔记整理 一、思考二、堆概念与性质三、堆的构建、删除、添加1. 构建2. 删除3. 添加 四、复杂度分析4.1 时间复杂度4.2 空间复杂度 五、总结 一、思考 设计一种数据结构&#xff0c;来存放整数&#xff0c;要求三个接口&#xff1a; 1&#xff09;获取序列中的最值&#…

Thinkphp/Laravel旅游景区预约系统的设计与实现

目录 技术栈和环境说明具体实现截图设计思路关键技术课题的重点和难点&#xff1a;框架介绍数据访问方式PHP核心代码部分展示代码目录结构解析系统测试详细视频演示源码获取 技术栈和环境说明 采用PHP语言开发&#xff0c;开发环境为phpstudy 开发工具notepad并使用MYSQL数据库…

景联文科技入选《2024中国AI大模型产业图谱2.0版》数据集代表厂商

近日&#xff0c;大数据产业领域头部媒体数据猿携手上海大数据联盟联合发布了备受瞩目的《2024中国AI大模型产业图谱2.0版》。以大数据与AI为代表的智能技术为主要视角&#xff0c;聚焦全产业链&#xff0c;为业内提供更为专业直观的行业指导。 景联文科技凭借高质量数据集&…

基于大数据的学生体质健康信息系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…