4. 微分
4.2 导数的意义与性质
4.2.1 导数在物理中的背景
物体在OS方向上运动,位移函数为 s = s ( t ) s=s(t) s=s(t),求时刻 t t t的瞬时速度,找一个区间 [ t , t + △ t ] [t,t+\bigtriangleup t] [t,t+△t],从时刻 t t t变到时刻 t + △ t t+\bigtriangleup t t+△t,则 △ s = s ( t + △ t ) − s ( t ) \bigtriangleup s=s(t+\bigtriangleup t)-s(t) △s=s(t+△t)−s(t), △ s △ t \frac{\bigtriangleup s}{\bigtriangleup t} △t△s是这段时间的平均速度,而这段时间的瞬时速度为 v ( t ) = lim △ t → 0 △ s △ t = lim △ t → 0 s ( t + △ t ) − s ( t ) △ t = s ′ ( t ) v(t)=\lim\limits_{\bigtriangleup t\to 0}\frac{\bigtriangleup s}{\bigtriangleup t}=\lim\limits_{\bigtriangleup t\to 0}\frac{s(t+\bigtriangleup t)-s(t)}{\bigtriangleup t}=s'(t) v(t)=△t→0lim△t△s=△t→0lim△ts(t+△t)−s(t)=s′(t)
再看一个例子,设 p ( t ) p(t) p(t)表示某地区在 t t t时刻的人口数,要算某一时段的人口增长率,在 [ t , t + △ t ] [t,t+\bigtriangleup t] [t,t+△t]这段时间, △ p = p ( t + △ t ) − p ( t ) \bigtriangleup p=p(t+\bigtriangleup t)-p(t) △p=p(t+△t)−p(t),则 △ p △ t \frac{\bigtriangleup p}{\bigtriangleup t} △t△p是这段时间人口平均增长率,人口在该时刻 t t t的增长率为 lim △ t → 0 △ p △ t = lim △ t → 0 p ( t + △ t ) − p ( t ) △ t = p ′ ( t ) \lim\limits_{\bigtriangleup t\to 0}\frac{\bigtriangleup p}{\bigtriangleup t}=\lim\limits_{\bigtriangleup t\to 0}\frac{p(t+\bigtriangleup t)-p(t)}{\bigtriangleup t}=p'(t) △t→0lim△t△p=△t→0lim△tp(t+△t)−p(t)=p′(t)
4.2.2 导数的几何意义
画一条曲线,求曲线上一点的切线的斜率
切线看成是割线的极限位置
让 △ x → 0 \bigtriangleup x\to 0 △x→0,则割线的斜率为 △ y △ x \frac{\bigtriangleup y}{\bigtriangleup x} △x△y,记切线斜率为 k k k,记函数为 y = f ( x ) y=f(x) y=f(x),切线斜率为 k = lim △ x → 0 △ y △ x = lim △ x → 0 f ( x + △ x ) − f ( x ) △ x = f ′ ( x ) k=\lim\limits_{\bigtriangleup x\to 0}\frac{\bigtriangleup y}{\bigtriangleup x}=\lim\limits_{\bigtriangleup x\to 0}\frac{f(x+\bigtriangleup x)-f(x)}{\bigtriangleup x}=f'(x) k=△x→0lim△x△y=△x→0lim△xf(x+△x)−f(x)=f′(x)
过 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))的切线: y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=f'(x_0)(x-x_0) y−f(x0)=f′(x0)(x−x0),法线方程为 y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-f(x_0)=-\frac{1}{f'(x_0)}(x-x_0),f'(x_0)\ne 0 y−f(x0)=−f′(x0)1(x−x0),f′(x0)=0
【例4.2.1】求抛物线 y 2 = 2 p x , p > 0 y^2=2px,p>0 y2=2px,p>0, ( x 0 , y 0 ) (x_0,y_0) (x0,y0)是抛物线上切线一点,求过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的切线方程。
【解】
y = 2 p x y=\sqrt{2px} y=2px
k = lim △ x → 0 2 p ( x + △ x ) − 2 p x △ x = lim △ x → 0 ( 2 p ( x + △ x ) − 2 p x ) ( 2 p ( x + △ x ) + 2 p x ) △ x ( 2 p ( x + △ x ) + 2 p x ) = lim △ x → 0 2 p △ x △ x ( 2 p ( x + △ x ) + 2 p x ) = lim △ x → 0 2 p 2 p ( x + △ x ) + 2 p x = 2 p 2 2 p x = p 2 x k=\lim\limits_{\bigtriangleup x\to 0}\frac{\sqrt{2p(x+\bigtriangleup x)}-\sqrt{2px}}{\bigtriangleup x}=\lim\limits_{\bigtriangleup x\to 0}\frac{(\sqrt{2p(x+\bigtriangleup x)}-\sqrt{2px})(\sqrt{2p(x+\bigtriangleup x)}+\sqrt{2px})}{\bigtriangleup x(\sqrt{2p(x+\bigtriangleup x)}+\sqrt{2px})}=\lim\limits_{\bigtriangleup x\to 0}\frac{2p\bigtriangleup x}{\bigtriangleup x(\sqrt{2p(x+\bigtriangleup x)}+\sqrt{2px})}=\lim\limits_{\bigtriangleup x\to 0}\frac{2p}{\sqrt{2p(x+\bigtriangleup x)}+\sqrt{2px}}=\frac{2p}{2\sqrt{2px}}=\sqrt{\frac{p}{2x}} k=△x→0lim△x2p(x+△x)−2px=△x→0lim△x(2p(x+△x)+2px)(2p(x+△x)−2px)(2p(x+△x)+2px)=△x→0lim△x(2p(x+△x)+2px)2p△x=△x→0lim2p(x+△x)+2px2p=22px2p=2xp
切线方程为 y − y 0 = p 2 x 0 ( x − x 0 ) y-y_0=\sqrt{\frac{p}{2x_0}}(x-x_0) y−y0=2x0p(x−x0)
【注】由抛物线的切线方程得到抛物线的重要性质:
tan θ 1 = p 2 x 0 = p y 0 \tan \theta_{1}=\frac{\sqrt{p}}{\sqrt{2 x_{0}}}=\frac{p}{y_{0}} tanθ1=2x0p=y0p,记 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)与抛物线焦点 ( p 2 , 0 ) (\frac{p}{2},0) (2p,0)连线与 x x x轴的夹角为 θ 2 \theta_{2} θ2,该连线与抛物线在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的切线的夹角为 θ \theta θ,则有:
tan θ 2 = y 0 x 0 − p 2 \tan \theta_{2}=\frac{y_{0}}{x_{0}-\frac{p}{2}} tanθ2=x0−2py0
于是 tan θ = tan ( θ 2 − θ 1 ) = tan θ 2 − tan θ 1 1 + tan θ 2 ⋅ tan θ 1 = y 0 x 0 − p 2 − p y 0 1 + y 0 x 0 − p 2 ⋅ p y 0 = p y 0 = tan θ 1 \tan \theta=\tan (\theta_{2} - \theta_{1})=\frac{\tan \theta_{2}-\tan \theta_{1}}{1+\tan \theta_{2} \cdot \tan \theta_{1}}=\frac{\frac{y_{0}}{x_{0}-\frac{p}{2}}-\frac{p}{y_{0}}}{1+\frac{y_{0}}{x_{0}-\frac{p}{2}} \cdot \frac{p}{y_{0}}}=\frac{p}{y_{0}}=\tan \theta_{1} tanθ=tan(θ2−θ1)=1+tanθ2⋅tanθ1tanθ2−tanθ1=1+x0−2py0⋅y0px0−2py0−y0p=y0p=tanθ1( y 0 2 = 2 p x 0 y_{0}^{2}=2px_{0} y02=2px0代入化简计算)
即恰好 θ \theta θ与切线与 x x x轴夹角 θ 1 \theta_{1} θ1相等。
【例4.2.2】 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1,求椭圆上过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)点的切线。
【解】不妨设 y 0 > 0 y_0>0 y0>0, y = b a a 2 − x 2 y=\frac{b}{a}\sqrt{a^2-x^2} y=aba2−x2
k = b a lim Δ x → 0 a 2 − ( x 0 + Δ x ) 2 − a 2 − x 0 2 Δ x = b a lim Δ x → 0 x 0 2 − ( x 0 + Δ x ) 2 ( a 2 − ( x 0 + Δ x ) 2 + a 2 − x 0 2 ) ⋅ Δ x = b a − x 0 a 2 − x 0 2 k=\frac{b}{a} \lim\limits_{\Delta x \rightarrow 0} \frac{\sqrt{a^{2}-\left(x_{0}+\Delta x\right)^{2}}-\sqrt{a^{2}-x_{0}^{2}}}{\Delta x}=\frac{b}{a} \lim\limits_{\Delta x \rightarrow 0} \frac{x_{0}^{2}-\left(x_{0}+\Delta x\right)^{2}}{\left(\sqrt{a^{2}-\left(x_{0}+\Delta x\right)^{2}}+\sqrt{a^{2}-x_{0}^{2}}\right) \cdot \Delta x}=\frac{b}{a} \frac{-x_{0}}{\sqrt{a^{2}-x_{0}^{2}}} k=abΔx→0limΔxa2−(x0+Δx)2−a2−x02=abΔx→0lim(a2−(x0+Δx)2+a2−x02)⋅Δxx02−(x0+Δx)2=aba2−x02−x0
所以切线方程为 y − y 0 = b a − x 0 a 2 − x 0 2 ( x − x 0 ) = − b 2 a 2 ⋅ x 0 b a a 2 − x 0 2 y-y_{0}=\frac{b}{a} \frac{-x_{0}}{\sqrt{a^{2}-x_{0}^{2}}}\left(x-x_{0}\right)=-\frac{b^2}{a^2}\cdot\frac{x_0}{\frac{b}{a}\sqrt{a^2-x_{0}^{2}}} y−y0=aba2−x02−x0(x−x0)=−a2b2⋅aba2−x02x0
即 a 2 y 0 y + b 2 x 0 x = a 2 y 0 2 + b 2 x 0 2 = a 2 b 2 a^2y_0y+b^2x_0x=a^2y_0^2+b^2x_0^2=a^2b^2 a2y0y+b2x0x=a2y02+b2x02=a2b2
即 y 0 y a + x 0 x b = 1 \frac{y_0y}{a}+\frac{x_0x}{b}=1 ay0y+bx0x=1