YOLO11震撼发布!

非常高兴地向大家介绍 Ultralytics YOLO系列的新模型: YOLO11! YOLO11 在以往 YOLO 模型基础上带来了一系列强大的功能和优化,使其速度更快、更准确、用途更广泛。主要改进包括

  • 增强了特征提取功能,从而可以更精确地捕捉细节
  • 以更少的参数实现更高的精度
  • 更快的处理速度,从而显著提高了实时性能

了解 YOLO11

YOLO11为YOLO系列开启了新的篇章,提供一个功能更强大、更通用的模型,将计算机视觉技术推向了新的高度。凭借其精炼的架构和增强的功能,YOLO11的性能和精度更胜一筹。Ultralytics的创始人兼首席执行官Glenn Jocher分享道:“YOLO11旨在打造一款既强大又实用的模型,以满足现实世界应用的需求。其改进后的效率和准确性使其成为一款强大的工具,可以适应各行各业面临的独特挑战。我迫不及待地想看到视觉AI社区如何利用YOLO11创造创新解决方案,将计算机视觉技术提升至新的层级。”

以下是 YOLO11 支持的计算机视觉任务

  • 目标检测:在图像或视频帧中识别和定位物体,并在其周围绘制边界框,适用于监控、自动驾驶和零售分析等应用
  • 实例分割:在图像中识别和分离单个物体,直至像素级别。对于医学影像和制造业中的缺陷检测等应用非常有用
  • 图像分类:将完整图像归类到预定义的类别中,适合电子商务中的产品分类或野生动物监测等应用
  • 姿态估计:检测图像或视频帧中的特定关键点,以跟踪动作或姿态,有益于健身追踪、运动分析和医疗保健应用
  • 方向性目标检测(Oriented Bounding Box,OBB):检测具有方向角的物体,可以更精确地定位旋转物体,对于航空影像、机器人技术和仓库自动化任务特别有价值
  • 目标追踪:在连续的视频帧中监控和跟踪物体的运动,对于许多实时应用至关重要

YOLO11独特之处

YOLO11在今年早些时候推出的YOLOv9和YOLOv10的基础上取得了进一步进展,融入了改进后的架构设计、增强的特征提取技术以及优化的训练方法。YOLO11真正脱颖而出之处在于其速度、准确性和效率的出色结合,使其成为Ultralytics迄今为止打造的最强大的模型之一。凭借改进后的设计,YOLO11提供了更好的特征提取能力,即从图像中识别重要模式和细节的过程,这使得即使在具有挑战性的场景中也能更准确地捕捉复杂细节

值得注意的是,YOLO11m在COCO数据集上实现了更高的平均精度均值(mAP)分数,同时使用的参数比YOLOv8m少了22%,从而在不影响性能的情况下减轻了计算负担。意味着它在运行更高效的同时,还能提供更准确的结果。此外,YOLO11的处理速度更快,推理时间比YOLOv10快约2%,非常适合实时应用

YOLO11旨在处理复杂任务的同时减少对资源的占用,并设计用于提升大规模模型的性能,使其非常适合要求苛刻的AI项目。对增强管道的改进也优化了训练过程,使YOLO11更容易适应不同的任务,无论是处理小型项目还是大规模应用

事实上,YOLO11在处理能力方面效率极高,非常适合在云和边缘设备上部署,确保在不同环境中都能灵活应用。简而言之,YOLO11不仅仅是一次升级;它是一个更准确、更高效、更灵活的模型,能够更好地应对任何计算机视觉挑战。无论是自动驾驶、监控、医疗成像、智能零售还是工业应用场景,YOLO11都足够灵活,几乎可以满足任何计算机视觉应用的需求

无缝集成现有系统

YOLO11旨在与当前使用的系统和平台实现无缝集成。在YOLOv8提供的支持基础上,YOLO11兼容多种训练、测试和部署环境。无论使用的是NVIDIA GPU、边缘设备,还是在云平台上进行部署,YOLO11都已进行优化,能够轻松融入工作流程

赋能AI社区

YOLO11进步的一个主要因素是Ultralytics HUB。Ultralytics HUB是一个用户友好的平台,可简化YOLO模型(包括YOLO11)的训练和部署

Ultralytics HUB通过让用户能够上传数据集、访问一系列预训练模型以及在一个平台上管理项目,从而简化了开发流程。HUB还支持协作,使团队能够轻松地在AI项目上展开合作。以下是Ultralytics HUB的其他一些关键功能

  • 云训练:提供无缝的基于云的模型训练,以实现可扩展性和效率
  • 预训练模型:提供访问各种预训练的YOLOv5、YOLOv8和YOLO11模型
  • 模型导出:训练后的模型可以导出为各种格式以进行部署
  • 集成:与Roboflow、Google Colab和Weights & Biases等平台无缝集成
  • 详细文档:提供全面的指南和常见问题解答以支持用户
  • 社区支持:有一个活跃的Discord社区可供提问和讨论

凭借HUB的直观设计,经验丰富的开发人员和新用户都可以快速上手。随着越来越多的开发人员通过HUB使用YOLO11,可以期待高性能应用的激增,这些应用将突破计算机视觉的界限并塑造AI技术的未来

体验 YOLO11

像 YOLOv8 一样,YOLO11 很快将通过 Ultralytics HUB 和 Ultralytics Python 包提供试用。可以登录 HUB 或查看我们的快速入门指南,了解如何安装包的逐步说明。发布后能够探索其功能,尝试不同的数据集,并查看 YOLO11 在各种场景下的表现。我们迫不及待地想看到 AI 社区与 YOLO11 互动并为其发展做出贡献,提供反馈或在其基础上构建

https://www.ultralytics.com/zh/blog/ultralytics-yolo11-has-arrived-redefine-whats-possible-in-ai

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/436418.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二维环境下的TDOA测距定位的MATLAB代码,带中文注释

TDOA测距定位程序介绍 概述 本MATLAB程序实现了基于时间差到达(TDOA)技术的二维测距定位,能够处理4个或任意数量(大于3个)的锚节点。在无线定位和导航系统中,TDOA是一种常用的定位方法,通过测量…

论文精读--Two-Stream Convolutional Networks for Action Recognition in Videos

对于单张图片,丢进卷积和全连接层直接得出分类结果就行 但对于视频,早期的一些工作把视频中的一些关键帧抽取出来,把一个个帧通过网络,最后把结果合并,或者把帧叠起来,一起丢进网络。在网络中进行early fu…

基于Springboot+Vue的基于协同过滤算法的个性化音乐推荐系统 (含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 系统中…

【YOLO系列】YOLOv11正式发布!

Yolov11发布文档 代码链接 了解Ultralytics YOLO11的所有突破性功能,这是我们最新的人工智能模型,具有无与伦比的准确性和效率。 我们很高兴向大家介绍Ultralytics型号的下一次进化:YOLO11!YOLO11建立在以前YOLO模型版本令人印象…

安装图片标识工具anylabeling

目录 下载压缩包 创建环境 安装opencv 安装第三方库 运行setup.py文件 安装过程可能会出现的错误: 错误1 错误2 安装完成 图标更换 之前提到的嵌入式开发】可编程4k蓝牙摄像头点击器还可以训练模型,使图像识别精度提高 现在讲解,如…

【人人保-注册安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 1. 暴力破解密码,造成用户信息泄露 2. 短信盗刷的安全问题,影响业务及导致用户投诉 3. 带来经济损失,尤其是后付费客户,风险巨大,造…

TongESB7, TongGW, admin账号密码重置方式

停止控制台 修改系统库 identities 表 configuration字段中的password 重启manage

【C语言】指针详解(一)

个人主页 : zxctscl 如有转载请先通知 文章目录 1.内存与地址2.指针变量与地址2.1 取地址操作符&2.2 指针变量2.3 指针类型2.4 解引用操作符2.5 指针变量的大小 3. 指针变量类型的意义3.1 指针的解引用 4. const修饰指针4.1 const修饰变量4.2 const修饰指针变量…

矿石运输船数据集、散货船数据集、普通货船数据集、集装箱船数据集、渔船数据集以及客船数据集

海船:用于船只检测的大规模精准标注数据集 我们很高兴地介绍一个新的大规模数据集——海船,该数据集专为训练和评估船只目标检测算法而设计。目前,这个数据集包含31,455张图像,并涵盖了六种常见的船只类型,包括矿石运…

如何使用ssm实现科技银行业务管理系统+vue

TOC ssm743科技银行业务管理系统vue 第一章 绪论 1.1 研究背景 在现在社会,对于信息处理方面,是有很高的要求的,因为信息的产生是无时无刻的,并且信息产生的数量是呈几何形式的增加,而增加的信息如何存储以及短时间…

网络通信——动态路由协议RIP

目录 一.动态路由协议分类 二.距离矢量路由协议 (理解) 三. 链路状态路由协议(理解) 四.RIP的工作原理 五.路由表的形成过程 六. RIP的度量值(条数)cost 七.RIP的版本(v1和v2&#xff0…

springboot整合seata

一、准备 docker部署seata-server 1.5.2参考&#xff1a;docker安装各个组件的命令 二、springboot集成seata 2.1 引入依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-seata</artifactId>&…

数据清洗第1篇章 - 处理缺失值和重复值

数据清洗是数据分析过程中至关重要的一步&#xff0c;它确保数据的准确性、一致性和完整性。这不仅有助于提高分析结果的可靠性和有效性&#xff0c;还能为算法建模决策提供高质量的数据基础。在进行数据分析和建模的过程中&#xff0c;大量的时间花在数据准备上&#xff1a;加…

【Linux服务器】git和github交互使用

前言&#xff1a;有时候pycharm连接不上github&#xff0c;还是得命令行操作 目录 1. 准备git2. 配置github账户3. 上传项目3.1 创建本地仓库3.2 提交本地代码3.3 上传到github 4. 注意 1. 准备git 下载链接&#xff1a;官网 下载后直接运行安装&#xff0c;cmd输入git --vers…

Redis篇(缓存机制 - 多级缓存)(持续更新迭代)

目录 一、传统缓存的问题 二、JVM进程缓存 1. 导入案例 2. 初识Caffeine 3. 实现JVM进程缓存 3.1. 需求 3.2. 实现 三、Lua语法入门 1. 初识Lua 2. HelloWorld 3. 变量和循环 3.1. Lua的数据类型 3.2. 声明变量 3.3. 循环 4. 条件控制、函数 4.1. 函数 4.2. 条…

set和map结构的使用

个人主页&#xff1a;敲上瘾-CSDN博客 个人专栏&#xff1a;游戏、数据结构、c语言基础、c学习、算法 目录 一、序列式容器和关联式容器 二、set和multiset 1.insert 2.erase 3.find 4.count 三、map和mapmulti 1.pair 2.insert 3.find 4.operator[ ] 5.erase 6.lo…

UE虚幻引擎云渲染汽车动画的优势!

在汽车广告和动画制作领域&#xff0c;虚幻引擎&#xff08;UE&#xff09;结合云渲染技术正掀起一场技术革命。这项技术以其高性能、成本效益和灵活性&#xff0c;为创作者提供了强大的工具&#xff0c;以实现更加逼真和高效的汽车动画制作。 一、为什么选择UE虚幻引擎制作汽车…

MATLAB案例 | Copula的密度函数和分布函数图

本文介绍各种类型&#xff08;Gaussian、t、Gumbel、Clayton、Frank&#xff09;Copula的密度函数和分布函数图的绘制 完整代码 clc close all clear%% ********************计算Copula的密度函数和分布函数图************************ [Udata,Vdata] meshgrid(linspace(0,1…

armbian安装docker

最近又搞了台瑞莎Radxa 3E &#xff0c;从零开始部署unbuntu环境&#xff0c;发现是真曲折啊&#xff0c;虽然有点前车之鉴了 在Armbian上安装Docker&#xff0c;可以按照以下步骤操作&#xff1a; 1、更新软件包列表&#xff1a; sudo apt-get update 2、安装必要的软件包…

Web和UE5像素流送、通信教程

一、web端配置 首先打开Github地址&#xff1a;https://github.com/EpicGamesExt/PixelStreamingInfrastructure 找到自己虚幻引擎对应版本的项目并下载下来&#xff0c;我这里用的是5.3。 打开项目找到PixelStreamingInfrastructure-master > Frontend > implementat…