Elasticsearch 开放推理 API 增加了对 Google AI Studio 的支持

作者:来自 Elastic Jeff Vestal

我们很高兴地宣布 Elasticsearch 的开放推理 API 支持 Gemini 开发者 API。使用 Google AI Studio 时,开发者现在可以与 Elasticsearch 索引中的数据进行聊天、运行实验并使用 Google Cloud 的模型(例如 Gemini 1.5 Flash)构建应用程序。AI Studio 是 Google 发布 Google DeepMind 最新模型的地方,也是使用 Gemini 开始构建的最快方式。

在此博客中,我们将创建一个新的 Google AI Studio 项目,创建一个 Elasticsearch 推理 API 端点以使用 Gemini 1.5 Flash,并实现一个示例聊天应用程序来估计美式足球场上可以容纳多少只鸭子!(为什么不呢?)

AI Studio API 密钥

首先,我们需要为 AI Studio 创建一个 API 密钥。前往 ai.google.dev/aistudio 并点击 “Sign In to Google AI Studio.”。

如果你尚未登录,系统将提示你登录。登录后,你将看到两个选项:在浏览器中使用 AI Studio 测试 Gemini 提示或创建 API 密钥。我们将创建一个 API 密钥以允许 Elasticsearch 连接到 AI Studio。

首次创建 API 密钥时,系统会提示你接受 Google Cloud 的条款和条件。如果你使用个人帐户,你将可以选择在新项目中创建 API 密钥。如果你使用企业帐户,则可能看不到该选项,具体取决于你的访问角色。无论哪种方式,你都可以选择现有项目来创建密钥。

选择现有项目或创建新项目。

将生成的 API 密钥复制到安全的地方,以便在下一部分中使用。

Elasticsearch 推理 API

我们将使用 Python 配置 Inference API 以连接到 Google AI Studio 并使用 Gemini 测试 chat completion。

创建推理端点

创建 Elasticsearch 连接。

es = Elasticsearch(elasticsearch_url, api_key=elasticsearch_api_key
)

创建推理端点以连接到 Google AI Studio。对于本博客,我们将使用 Gemini 1.5 Flash 模型。有关可用模型的列表,请参阅 Gemini 文档。

inference_id = "google_ai_studio"model_config = {"service": "googleaistudio","service_settings": {"api_key": google_ai_studio_api_key,"model_id": google_ai_studio_model_id}
}# Create the endpoint
create_endpoint = es.inference.put(inference_id=inference_id, task_type="completion",body=model_config)

确认端点已创建。

inf_info = es.inference.get(inference_id=inference_id)
print(inf_info.body)

输出应类似于:

{'endpoints': [{'model_id': 'google_ai_studio','inference_id': 'google_ai_studio','task_type': 'completion','service': 'googleaistudio','service_settings': {'model_id': 'gemini-1.5-flash','rate_limit': {'requests_per_minute': 360}},'task_settings': {}}]}

聊天时间到了!

这就是创建 Elasticsearch API 端点以访问 Google AI Studio 所需的全部步骤!完成后,你就可以开始使用它了。

我们将要求它估计一个美式足球场上可以容纳多少只鸭子。 为什么? 为什么不呢。

response = es.inference.inference(     inference_id=inference_id, body={"input": "hello"})print(response.body['completion'][0]['result'])

响应:

It's impossible to give an exact number of ducks that could fit on an American football field without some crucial information:* **Duck size:**  Ducks come in various sizes. Are we talking about mallards, Muscovy ducks, or something else? 
* **Duck behavior:** Ducks aren't neatly arranged like bricks. They'll move around, jostle, and likely try to escape. This makes packing them tightly impossible.
* **Field conditions:** Are we talking about a dry field, or one with mud and water? This impacts how ducks can stand and move.**Here's a more helpful approach:*** **Area:** An American football field is 100 yards long and 53 1/3 yards wide, for a total area of 5,333 square yards.
* **Duck size:** Let's assume a typical mallard duck is about 2 feet long and 1 foot wide. This gives us a rough area of 2 square feet per duck.
* **Packing density:** Even if we could perfectly pack ducks, we'd need to allow for some space between them. Let's be generous and assume we can fit 4 ducks per square yard. **Calculation:*** 5,333 square yards * 4 ducks/square yard = **21,332 ducks****However, this is a highly unrealistic estimate.** In reality, you'd likely be able to fit far fewer ducks due to their movement and the need for space.**It's more fun to imagine the chaos of trying to fit that many ducks on a field!** 🦆🦆🦆

简单而强大

随着 Google AI Studio 的加入,Elastic 开放推理 API 为开发者提供了越来越多强大的生成式 AI 功能。Google AI Studio 旨在实现简单、快速的生成式 AI 实验,以测试你的最佳想法。

准备好自己尝试了吗?开始免费试用。
想要获得 Elastic 认证?了解下一期 Elasticsearch 工程师培训何时开始!

原文:Elasticsearch open inference API adds support for Google AI Studio — Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/437959.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用网络分析仪测试功分器驻波的5个步骤

在射频系统中,功分器的驻波比直接关系到信号的稳定性和传输效率。本文将带您深入了解驻波比的测试方法和影响其结果的因素。 一、功分器驻波比 驻波(Voltage Standing Wave Ratio),简称SWR或VSWR,是指频率相同、传输方向相反的两种波&#xf…

TCN模型实现电力数据预测

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色&a…

macOS 开发环境配置与应用开发

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

mfc140u.dll缺失?快速解决方法全解析,解决mfc140u.dll错误

当你的电脑出现找不到mfc140u.dll的问题,不少用户在使用电脑时陷入了困扰。这个错误提示就像一道屏障,阻挡了用户正常使用某些软件。无论是办公软件、游戏还是专业的设计工具,一旦出现这个问题,都会导致软件无法正常运行。如果您也…

【AIGC】内容创作——AI文字、图像、音频和视频的创作流程

我的主页:2的n次方_ 近年来,生成式人工智能(AIGC,Artificial Intelligence Generated Content)技术迅速发展,彻底改变了内容创作的各个领域。无论是文字、图像、音频,还是视频,A…

【分布式微服务云原生】windows+docker+mysql5.7.44一主一从主从复制

目录 1. 主库设置2. 从库设置3. 验证主从复制内容汇总表格 摘要: 在Windows系统上通过Docker部署MySQL主从复制,以下是详细的步骤和命令,帮助你设置一主一从的MySQL复制环境。 1. 主库设置 步骤1:运行MySQL主库容器 docker run …

如何在 DAX 中计算多个周期的移动平均线

在 DAX 中计算移动聚合很容易。但是,计算一段时间内的移动平均值时会有一些陷阱。由于其中一些陷阱是定义问题,因此我们必须小心,不要选择错误的方法。让我们看看细节。欢迎来到雲闪世界。 添加图片注释,不超过 140 字&#xff08…

一种路径敏感的数据依赖分析算法

Falcon 1.方法1.1.Basic Rule1.2.改进算法1.3.跨函数分析 2.Evaluation2.1.设置2.2.value-flow分析2.3.Thin Slicing2.4.Bug Detection 参考文献 这篇工作发表于PLDI 24,提出了一种context- 以semi-path-sensitive的数据依赖分析算法,解决path-sensitive…

css中背景色、背景图的使用

1、同时使用背景色、背景图片 参考链接:链接 以下样式,背景色在图片下方(缺点:图片不透明时,背景色会被完全遮挡。) .header {height: 100%;width: 100%;background-color: #000;background-image: url(/static/images/back.pn…

thinkphp6开发的通用网站系统源码

thinkphp6开发的通用网站系统源码。 基于ThinkPHP6框架开发的通用后台权限管理系统,底层采用国内最流行的ThinkPHP6框架, 支持内容管理、文章管理、用户管理、权限管理、角色管理等功能。 代码下载百度网盘

jenkins部署Maven和NodeJS项目

在 Java 项目开发中,项目的编译、测试、打包等是比较繁琐的,属于重复劳动的工作,浪费人力和时间成本。以往开发项目时,程序员往往需要花较多的精力在引用 jar 包搭建项目环境上,跨部门甚至跨人员之间的项目结构都有可能…

基于SSM的宿舍管理系统 (源码+定制+文档)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

【MAUI】CommunityToolkit社区工具包介绍

一、为什么需要声明式开发 .NET的MVVM,始于WPF,很古典,它甚至可能是现代前端框架“声明式开发”的鼻祖。声明式开发,之所以出现,是因为命令式开发在UI层和代码层上无法解耦的问题。如下图所示: 1、命令式开发:后台代码需要调用UI层的控件(label.Text),如果更新UI层…

stm32 bootloader跳转程序设计

文章目录 1、bootloader跳转程序设计&#xff08;1&#xff09;跳转程序&#xff08;2&#xff09;、app程序中需要注意<1>、在keil中ROM起始地址和分配的空间大小<2>、在system_stm32f4xx.c中设置VECT_TAB_OFFSET为需要偏移的地址<3>、main函数中使能中断 总…

C初阶(六)--- static 来喽

前言&#xff1a;C语言中有许多关键字&#xff08;关键字是预先保留的标识符&#xff0c;具有特殊意义&#xff0c;不能用作变量 名、函数名等普通标识符。&#xff09; 比如&#xff1a;前面在变量与常量那一节提到的extern 就是一个关键字&#xff0c;应该还记得e…

Grafana链接iframe嵌入Web前端一直跳登录页面的问题记录

概述 公司有个项目使用到Grafana作为监控界面,因为项目方的环境极其复杂,仅物理隔离的环境就有三四个,而且每个都得部署项目,今天在某个环境测试,查看界面遇到一个比较奇怪的Grafana问题,后面针对该问题进行跟踪分析并解决,故而博文记录,用于备忘。 问题 登录项目We…

Pikachu-Sql Inject-insert/update/delete注入

insert 注入 插入语句 insert into tables values(value1,value2,value3); 如&#xff1a;插入用户表 insert into users (id,name,password) values (id,username,password); 当点击注册 先判断是否有SQL注入漏洞&#xff0c;经过判断之后发现存在SQL漏洞。构造insert的pa…

Redis 篇-深入了解在 Linux 的 Redis 网络模型结构及其流程(阻塞 IO、非阻塞 IO、IO 多路复用、异步 IO、信号驱动 IO)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 用户空间与内核空间概述 2.0 Redis 网络模型 2.1 Redis 网络模型 - 阻塞 IO 2.2 Redis 网络模型 - 非阻塞 IO 2.3 Redis 网络模型 - IO 多路复用 2.3.1 IO 多路复…

【mmengine】配置器(config)(入门)读取与使用

一、 介绍 MMEngine 实现了抽象的配置类&#xff08;Config&#xff09;&#xff0c;为用户提供统一的配置访问接口。 配置类能够支持不同格式的配置文件&#xff0c;包括 python&#xff0c;json&#xff0c;yaml&#xff0c;用户可以根据需求选择自己偏好的格式。 配置类提供…

【网路通信基础与实践番外二】TCP协议的流量控制和拥塞控制以及二者区别和例题

TCP协议是端对端的协议&#xff0c;因此在数据进行传输的过程受发送方&#xff0c;数据通道&#xff0c;接收方三方状态的影响。我们用水龙头来比喻数据发送方&#xff0c;水管来比喻数据通道&#xff0c;水桶来表示数据接收方。 图(a)表示水桶太小&#xff0c;来不及接受注入…