五.运输层

目录

5.1概述

5.2传输层的寻址与端口

熟知端口号

套接字(Socket)

5.3 UDP

特点

UDP报文格式

UDP校验

二进制反码求和

5.4 TCP

特点

可靠传输

停止等待协议

流水线方式

累计应答

流量控制

滑动窗口

拥塞控制

三次握手,四次握手


 

5.1概述

只有主机才会有的层次

1.传输层提供进程和进程之间的逻辑通信。

2.复用和分用。

3.传输层对收到的报文进行差错检错。【传输层的接收到的报文就是网络层的数据报的数据部分,网络层检验了报文首部,这样只需要让运输层检验报文就好。】

4.传输层的两种协议。【UDP,TCP】

5.2传输层的寻址与端口

2.复用和分用。

复用:应用层所有的应用进程都可以通过传输层再传输到网络层。

分用:传输层从网络层收到的数据交付到指明的应用进程。

端口:

 

 

    这里的端口是逻辑端口/软件端口。

端口是传输层的SAP【服务访问点】。标识主机中的进程。

端口号只有本地意义,再因特网中不同的计算机的相同端口是没有联系的。

端口号的长度为16bit,能表示665536个不同的端口号。

熟知端口号

套接字(Socket)

在网络中采用发送方和接收方的套接字组合来识别端点,套接字唯一标识了网络中的一个主机上的一个进程。

5.3 UDP

用户数据报协议User Datagram Protocol

特点

UDP只在IP数据报服务之上增加了很少功能,即复用分用和差错检测。

UDP的主要特点:

    1. UDP是无连接的,减少开销和发送数据之前的时延。
    2. UDP使用最大努力交付,即不保证可靠传输。
    3. UDP是面向报文的,适合一次性传输少量数据的网络应用。

应用层给UDP多长的报文,UDP就照样发送,即一次发一个完整报文。

    1. UDP无拥塞控制,适合很多实时应用。
    2. UDP首部开销小,只有8字节,TCP却有20字节。

UDP报文格式

分用时,找不到对应的目的端口号,就丢弃报文,并发送给发送方ICMP“端口不可达”差错报告报文。

UDP校验

使用报文的伪首部进行UDP校验。

伪首部只有在计算校验和时才出现,不想下传送也不向上递交。

17:封装UDP报文的IP数据报首部协议字段是17;

UDP长度:UDP首部8B+数据部分长度(不包括伪首部)。

发送端

  1. 添上伪首部
  2. 全0填充校验和字段
  3. 全0填充数据部分(UDP数据报要看成许多4B的串联起来)
  4. 伪首部+首部+数据部分采用二进制反码求和
  5. 把和求反码填入校验和字段
  6. 去掉伪首部,发送

接收端

  1. 填上伪首部
  2. 伪首部+首部+数据部分采用二进制反码求和
  3. 结果全为1则无差错,否者丢弃数据报/交给应用层附上出差错的警告
二进制反码求和

反码算数运算:

两个数进行二进制反码求和的运算很简单。它的规则是从低位到高位逐列进行计算。0和0相加是0,0和1相加是1,1和1相加是0,但要产生一个进位1,加到下一列。如果最高位相加后产生进位,则最后得到的结果要加1。

注意事项:

1.反码运算时,其符号位与数值一起参加运算。

2.反码的符号位相加后,如果有进位出现,则要把它送回到最低位去相加(循环进位)。

3.用反码运算,其运算结果亦为反码。在转换为真值时,若符号位为0,数位不变;若符号位为1,应将结果求反才是其真值。

[例1] 已知X = + 1101 , Y = + 0110 , 用反码计算Z = X-Y。

解: [X]反 = 01101,[-Y]反 = 11001,则[Z]反 =[X]反+[-Y]反 = 01101+11001+1(循环进位)= 00111 , 其真值为Z = +0111。

[例2] 已知X = + 0110 , Y = + 1101 , 用反码计算Z = X-Y。

解: [X]反 = 00110,[-Y]反 = 10010,则[Z]反 =[X]反+[-Y]反 = 00110 + 10010

= 11000 , 其真值为Z = - 0111。

5.4 TCP

传输控制协议Transmission Control Protocol

特点

TCP是面向连接的,可靠的,基于字节流的传输层通信协议。

基于字节流:

很简单,TCP在建立连接时,需要告诉对方MSS(最大报文段大小)。

也就是说,如果要发送的数据很大,在TCP层是需要按照MSS来切割成一个个的TCP报文段的。

切割的时候不管原来的数据是什么意思,只是当做一串毫无意义的字节,在像切割的地方来一刀,再加上个序号,只要对方根据这个序号拼成最终想要的完整数据就行。

可靠传输

停止等待协议

OK,这样你将原本主机(端)到主机(端)的通信,升级为了进程和进程之间的通信。你没有意识到,你不知不觉实现了 UDP 协议(当然 UDP 协议中不光有源端口和目标端口,还有数据包长度和校验值,我们暂且略过)就这样,你用 UDP 协议无忧无虑地同 B 进行着通信,一直没发生什么问题。

但是此时出现了丢包问题。

由于网络的不可靠,数据包可能在半路丢失,而 A 和 B 却无法察觉。

对于丢包问题,只要解决两个事就好了。

第一个,A 怎么知道包丢了?

答案:让 B 告诉 A

第二个,丢了的包怎么办?

答案:重传

于是你设计了如下方案,A 每发一个包,都必须收到来自 B 的确认(ACK),再发下一个,否则在一定时间内没有收到确认,就重传这个包。

你管它叫停止等待协议。只要按照这个协议来,虽然 A 无法保证 B 一定能收到包,但 A 能够确认 B 是否收到了包,收不到就重试,尽最大努力让这个通信过程变得可靠,于是你们现在的通信过程又有了一个新的特征,可靠交付

流水线方式

停止等待虽然能解决问题,但是效率太低了,A 原本可以在发完第一个数据包之后立刻开始发第二个数据包,但由于停止等待协议,A 必须等数据包到达了 B ,且 B 的 ACK 包又回到了 A,才可以继续发第二个数据包,这效率慢得可不是一点两点。于是你对这个过程进行了改进,采用流水线的方式,不再傻傻地等。

累计应答

但是网路是复杂的、不可靠的。有的时候 A 发出去的数据包,分别走了不同的路由到达 B,可能无法保证和发送数据包时一样的顺序。

在流水线中有多个数据包和ACK包在乱序流动,他们之间对应关系就乱掉了。难道还回到停止等待协议?A 每收到一个包的确认(ACK)再发下一个包,那就根本不存在顺序问题。应该有更好的办法!A 在发送的数据包中增加一个序号(seq),同时 B 要在 ACK 包上增加一个确认号(ack),这样不但解决了停止等待协议的效率问题,也通过这样标序号的方式解决了顺序问题。

而 B 这个确认号意味深长:比如 B 发了一个确认号为 ack = 3,它不仅仅表示 A 发送的序号为 2 的包收到了,还表示 2 之前的数据包都收到了。这种方式叫累计确认累计应答

注意,实际上 ack 的号是收到的最后一个数据包的序号 seq + 1,也就是告诉对方下一个应该发的序号是多少。但图中为了便于理解,ack 就表示收到的那个序号,不必纠结。

流量控制

滑动窗口

有的时候,A 发送数据包的速度太快,而 B 的接收能力不够,但 B 却没有告知 A 这个情况。

怎么解决呢?

很简单,B 告诉 A 自己的接收能力,A 根据 B 的接收能力,相应控制自己的发送速率,就好了。

B 怎么告诉 A 呢?B 跟 A 说"我很强"这三个字么?

那肯定不行,得有一个严谨的规范。于是 B 决定,每次发送数据包给 A 时,顺带传过来一个值,叫窗口大小(win),这个值就表示 B 的接收能力。同理,每次 A 给 B 发包时也带上自己的窗口大小,表示 A 的接收能力。

B 告诉了 A 自己的窗口大小值,A 怎么利用它去做 A 这边发包的流量控制呢?很简单,假如 B 给 A 传过来的窗口大小 win = 5,那 A 根据这个值,把自己要发送的数据分成这么几类。

图片过于清晰,就不再文字解释了。当 A 不断发送数据包时,已发送的最后一个序号就往右移动,直到碰到了窗口的上边界,此时 A 就无法继续发包,达到了流量控制。

 

但是当 A 不断发包的同时,A 也会收到来自 B 的确认包,此时整个窗口会往右移动,因此上边界也往右移动,A 就能发更多的数据包了。

以上都是在窗口大小不变的情况下,而 B 在发给 A 的 ACK 包中,每一个都可以重新设置一个新的窗口大小,如果 A 收到了一个新的窗口大小值,A 会随之调整。如果 A 收到了比原窗口值更大的窗口大小,比如 win = 6,则 A 会直接将窗口上边界向右移动 1 个单位。

如果 A 收到了比原窗口值小的窗口大小,比如 win = 4,则 A 暂时不会改变窗口大小,更不会将窗口上边界向左移动,而是等着 ACK 的到来,不断将左边界向右移动,直到窗口大小值收缩到新大小为止。

OK,终于将流量控制问题解决得差不多了,你看着上面一个个小动图,给这个窗口起了一个更生动的名字,滑动窗口

拥塞控制

但有的时候,不是 B 的接受能力不够,而是网络不太好,造成了网络拥塞

拥塞控制与流量控制有些像,但流量控制是受 B 的接收能力影响,而拥塞控制是受网络环境的影响。拥塞控制的解决办法依然是通过设置一定的窗口大小,只不过,流量控制的窗口大小是 B 直接告诉 A 的,而拥塞控制的窗口大小按理说就应该是网络环境主动告诉 A。但网络环境怎么可能主动告诉 A 呢?只能 A 单方面通过试探,不断感知网络环境的好坏,进而确定自己的拥塞窗口的大小。

拥塞窗口大小的计算有很多复杂的算法,就不在本文中展开了,假如拥塞窗口的大小为  cwnd,上一部分流量控制的滑动窗口的大小为 rwnd,那么窗口的右边界受这两个值共同的影响,需要取它俩的最小值。窗口大小 = min(cwnd, rwnd)含义很容易理解,当 B 的接受能力比较差时,即使网络非常通畅,A 也需要根据 B 的接收能力限制自己的发送窗口。当网络环境比较差时,即使 B 有很强的接收能力,A 也要根据网络的拥塞情况来限制自己的发送窗口。正所谓受其短板的影响嘛~

三次握手,四次握手

有的时候,B 主机的相应进程还没有准备好或是挂掉了,A 就开始发送数据包,导致了浪费。

这个问题在于,A 在跟 B 通信之前,没有事先确认 B 是否已经准备好,就开始发了一连串的信息。就好比你和另一个人打电话,你还没有"喂"一下确认对方有没有在听,你就巴拉巴拉说了一堆。这个问题该怎么解决呢?地球人都知道,三次握手嘛!

A:我准备好了(SYN)

B:我知道了(ACK),我也准备好了(SYN)

A:我知道了(ACK)

A 与 B 各自在内存中维护着自己的状态变量,三次握手之后,双方的状态都变成了连接已建立(ESTABLISHED)。虽然就只是发了三次数据包,并且在各自的内存中维护了状态变量,但这么说总觉得太 low,你看这个过程相当于双方建立连接的过程,于是你灵机一动,就叫它面向连接吧。注意:这个连接是虚拟的,是由 A 和 B 这两个终端共同维护的,在网络中的设备根本就不知道连接这回事儿!但凡事有始就有终,有了建立连接的过程,就要考虑释放连接的过程,又是地球人都知道,四次挥手嘛!

A:再见,我要关闭了(FIN)

B:我知道了(ACK)

     给 B 一段时间把自己的事情处理完...

B:再见,我要关闭了(FIN)

A:我知道了(ACK)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438000.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

首屏优化之:SSR(服务端渲染)

引言 今天我们来聊一下首屏优化之SSR-服务端渲染(Server-Side Rendering)。 可能很多朋友并不了解什么是 SSR,包括在工作中写的网站是什么类型的也不太清楚,是 CSR 还是 SSR?作者在阅读过大量的文章之后,…

MySQL进阶篇 - 存储引擎

01 MySQL体系结构 【1】索引是在存储引擎层实现的,不同的存储引擎,索引的结构是不一样的。 【2】InnoDB引擎是MySQL5.5版本之后默认的存储引擎。 【3】MySQL体系结构分为客户端和服务器,服务器又分为4个层次。 02 存储引擎简介 【1】引擎…

C--编译和链接见解

欢迎各位看官!如果您觉得这篇文章对您有帮助的话 欢迎您分享给更多人哦 感谢大家的点赞收藏评论 感谢各位看官的支持!!! 一:翻译环境和运行环境 在ANSIIC的任何一种实现中,存在两个不同的环境1,…

BugReport中的App Processor wakeup字段意义

一、功耗字段意义: App processor wakeup:Netd基于xt_idletimer 待机下监视网络设备的收发工作状态,即当设备发生联网从休眠态变成为唤醒态时,会记录打醒者的uid(uid大于0)和网络类型(wifi或数据类型)、时间戳 实际日志:我们在B…

【Streamlit案例】制作销售数据可视化看板

目录 一、案例效果 二、数据分析 三、加载数据 四、网站前端 (一)网页标题和图标 (二)侧边栏和多选框 (三)主页面信息 ​(四)主页面图表 (五)隐藏部…

微信小程序操作蓝牙

主要流程: 1.初始化蓝牙适配器openBluetoothAdapter,如果不成功就onBluetoothAdapterStateChange监听蓝牙适配器状态变化事件 2.startBluetoothDevicesDiscovery开始搜寻附近的蓝牙外围设备 3.onBluetoothDeviceFound监听寻找到新设备的事件,…

用Python+flask+mysql等开发的Excel数据资产落地工具

话不多说 1)Excel文件上传,列表预览 2)选中要导入结构及数据的Excel文件 约束说明: 2.1)Excel文件的第一行约定为表头名称 2.2)系统自动识别字段列名及数据类型,目前不支持合并表头 3)Excel建表导入数据成功后,可在表源列表中预览查看 4)对数据表源可进行透视图设计管理,可对…

可以无限次使用o1-mini和o1-preview模型API接口的方法,并且比便宜便宜7倍以上

打开网站 https://open.xiaojingai.com 然后点击令牌页面,生成令牌,令牌就是api-key

Hive数仓操作(一)

Hive 介绍 Hive 是一个基于 Hadoop 的数据仓库工具,旨在简化大规模数据集的管理和分析。它将结构化数据文件映射为表,并提供类似 SQL 的查询功能。Hive 的数据存储在 Hadoop 分布式文件系统(HDFS)中,使用 Hive 查询语…

12.梯度下降法的具体解析——举足轻重的模型优化算法

引言 梯度下降法(Gradient Descent)是一种广泛应用于机器学习领域的基本优化算法,它通过迭代地调整模型参数,最小化损失函数以求得到模型最优解。 通过阅读本篇博客,你可以: 1.知晓梯度下降法的具体流程 2.掌握不同梯度下降法…

数据仓库简介(一)

数据仓库概述 1. 什么是数据仓库? 数据仓库(Data Warehouse,简称 DW)是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据,为不同层级的决策提供支持,构成…

云服务架构与华为云架构

目录 1.云服务架构是什么? 1.1 云服务模型 1.2 云部署模型 1.3 云服务架构的组件 1.4 云服务架构模式 1.5 关键设计考虑 1.6 优势 1.7 常见的云服务架构实践 2.华为云架构 2.1 华为云服务模型 2.2 华为云部署模型 2.3 华为云服务架构的核心组件 2.4 华…

【C++】STL标准模板库容器set

🦄个人主页:修修修也 🎏所属专栏:C ⚙️操作环境:Visual Studio 2022 目录 📌关联式容器set(集合)简介 📌set(集合)的使用 🎏set(集合)的模板参数列表 🎏set(集合)的构造函数 🎏set(集合)的迭代…

翔云 OCR:发票识别与验真

在数字化时代,高效处理大量文档和数据成为企业和个人的迫切需求。翔云 OCR 作为一款强大的光学字符识别工具,在发票识别及验真方面表现出色,为我们带来了极大的便利。 一、翔云 OCR 简介 翔云 OCR 是一款基于先进的人工智能技术开发的文字识别…

搭建k8s集群服务(kubeadm方式)

准备工作 操作系统版本:CentOS Linux release 7.9.2009 (Core) 虚拟机硬件配置:2核8G内存(最低2G),硬盘最低25G; linux内核版本(3.10版本尝试失败):5.4.268-1.el7.elr…

基于Java+VUE+echarts大数据智能道路交通信息统计分析管理系统

大数据智能交通管理系统是一种基于Web的系统架构,通过浏览器/服务器(B/S)模式实现对城市交通数据的高效管理和智能化处理。该系统旨在通过集成各类交通数据,包括但不限于车辆信息、行驶记录、违章情况等,来提升城市管理…

【Python】AudioLazy:基于 Python 的数字信号处理库详解

AudioLazy 是一个用于 Python 的开源数字信号处理(DSP)库,设计目的是简化信号处理任务并提供更直观的操作方式。它不仅支持基础的滤波、频谱分析等功能,还包含了滤波器、信号生成、线性预测编码(LPC)等高级…

两个向量所在平面的法线,外积,叉积,行列式

偶尔在一个数学题里面看到求两向量所在平面的法线,常规方法可以通过法线与两向量垂直这一特点,列两个方程求解;另外一种方法可以通过求解两个向量的叉积,用矩阵行列式 (determinant) 的方式,之前还没见过,在…

【计算机网络】传输层UDP和TCP协议

目录 再谈端口号端口号范围划分认识知名端口号查看知名端口号两个问题 UDP协议UDP特点UDP的缓冲区基于UDP的应用层协议 TCP协议TCP协议格式确认应答机制超时重传机制连接管理机制(三次握手与四次挥手)理解TIME_WAIT状态理解CLOSE_WAIT状态滑动窗口快重传…

【C++】迭代器失效问题解析

✨ Blog’s 主页: 白乐天_ξ( ✿>◡❛) 🌈 个人Motto:他强任他强,清风拂山冈! 🔥 所属专栏:C深入学习笔记 💫 欢迎来到我的学习笔记! 一、迭代器失效的概念 迭代器的作用…