【C++】STL标准模板库容器set

🦄个人主页:修修修也

🎏所属专栏:C++

⚙️操作环境:Visual Studio 2022


目录

📌关联式容器set(集合)简介

📌set(集合)的使用

🎏set(集合)的模板参数列表

🎏set(集合)的构造函数

🎏set(集合)的迭代器

🎏set(集合)的容量

🎏set(集合)的修改操作

📌关联式容器multiset简介 

📌关联式容器multiset使用

结语


        在之前对STL的学习中,我们已经接触过STL中的部分容器,比如:vector、list、deque、forward_list(C++11)等,根据"数据在容器中的排列"特性,这些容器统称为序列式(sequence)容器,因为其底层为线性序列的数据结构,里面存储的是元素本身

        还有一种容器是关联式(associative)容器, 关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key, value>结构的键值对,在数据检索时比序列式容器效率更高

        下图列出了STL中的各种容器,以及其基层与衍生层的关系:


📌关联式容器set(集合)简介

        我们先来看一下cplusplus.com - The C++ Resources Network网站对set的文档介绍:

        总结一下:

  1. set是按照一定次序存储元素的容器。
  2. 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。
  3. 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序。
  4. set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代。
  5. set在底层是用二叉搜索树(红黑树)实现的。

        注意:

  • 与map/multimap不同,map/multimap中存储的是真正的键值对<key, value>,set中只放value,但在底层实际存放的是由<value, value>构成的键值对。
  • set中插入元素时,只需要插入value即可,不需要构造键值对。
  • set中的元素不可以重复(因此可以使用set进行去重)。
  • 使用set的迭代器遍历set中的元素,可以得到有序序列。
  • set中的元素默认按照小于来比较。
  • set中查找某个元素,时间复杂度为:$log_2 n$
  • set中的元素不允许修改(因为修改key可能会导致二叉搜索树结构被破坏)。
  • set中的底层使用二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))来实现。

📌set(集合)的使用

🎏set(集合)的模板参数列表

        set的模板参数及含义如下:


🎏set(集合)的构造函数

        set的构造函数及其功能如下:

        使用示例如下:

#include<iostream>
#include<vector>
#include<set>
using namespace std;int main()
{//构造一个没有元素的空容器set<int> s1;for (auto e : s1){cout << e << " ";}cout << endl;vector<int> v;v.push_back(2);v.push_back(5);v.push_back(1);v.push_back(4);v.push_back(3);//迭代器区间构造set<int> s2(v.begin(), v.end());for (auto e : s2){cout << e << " ";}cout << endl;//拷贝构造set<int> s3(s2);for (auto e : s3){cout << e << " ";}cout << endl;return 0;
}

        运行效果如下:


🎏set(集合)的迭代器

        set的迭代器相关函数及其功能如下:

        使用示例如下:

int main()
{vector<int> v;v.push_back(2);v.push_back(5);v.push_back(1);v.push_back(4);v.push_back(3);//迭代器区间构造set<int> s(v.begin(), v.end());//正向迭代器set<int>::iterator it_b = s.begin();	//访问正向迭代器开始cout << *it_b << endl;set<int>::iterator it_e = s.end();		//访问正向迭代器结束--it_e;									cout << *it_e << endl;++it_e;while (it_b != it_e){cout << *it_b << " ";			//使用正向迭代器遍历set++it_b;}cout << endl;//反向迭代器set<int>::reverse_iterator rit_b = s.rbegin();		//访问反向迭代器开始cout << *rit_b << endl;set<int>::reverse_iterator rit_e = s.rend();		//访问反向迭代器结束--rit_e;cout << *rit_e << endl;++rit_e;while (rit_b != rit_e){cout << *rit_b << " ";			//使用反向迭代器遍历set++rit_b;}cout << endl;return 0;
}

        运行结果如下:


🎏set(集合)的容量

        set的容量相关函数及其功能如下:

        使用示例如下:

int main()
{//构造一个没有元素的空容器set<int> s1;cout << s1.empty() << endl;cout << s1.size() << endl;cout << s1.max_size() << endl;vector<int> v;v.push_back(2);v.push_back(5);v.push_back(1);v.push_back(4);v.push_back(3);//迭代器区间构造set<int> s2(v.begin(), v.end());cout << s2.empty() << endl;cout << s2.size() << endl;cout << s2.max_size() << endl;return 0;
}

        运行结果如下:


🎏set(集合)的修改操作

        set的修改相关函数及其功能如下:

函数声明功能介绍
pair<iterator, bool> insert(const value_type&x)在set中插入元素x,实际插入的是<x, x>构成的
键值对,如果插入成功,返回<该元素在set中的
位置,true>,如果插入失败,说明x在set中已经
存在,返回<x在set中的位置,false>
void erase ( iterator position )

删除set中position位置上的元素

size_type erase ( const key_type& x )删除set中值为x的元素,返回删除的元素的个数
void erase ( iterator first, iterator last )删除set中[first, last)区间中的元素
void swap ( set<Key,Compare,Allocator>& st )交换两个set中的元素
void clear ( )将set中的元素清空
iterator find ( const key_type& x ) const返回set中值为x的元素的位置
size_type count ( const key_type& x ) const返回set中值为x的元素的个数

        insert,erase,clear,find函数使用示例如下:

int main()
{//构造一个没有元素的空容器set<int> s1;//插入元素s1.insert(3);s1.insert(1);s1.insert(7);s1.insert(4);s1.insert(0);s1.insert(8);s1.insert(2);s1.insert(6);s1.insert(9);s1.insert(5);for (auto k : s1){cout << k << " ";}cout << endl;set<int>::iterator pos = s1.find(1);//迭代器删除元素s1.erase(pos);for (auto k : s1){cout << k << " ";}cout << endl;//key值删除元素s1.erase(3);for (auto k : s1){cout << k << " ";}cout << endl;//迭代区间删除元素s1.erase(s1.begin(), s1.find(5));for (auto k : s1){cout << k << " ";}cout << endl;//清空set中的元素s1.clear();for (auto k : s1){cout << k << " ";}cout << endl;return 0;
}

        运行结果如下:

        swap函数使用示例如下:

int main()
{//构造两个没有元素的空容器set<int> s1;set<int> s2;//s1中插入元素s1.insert(3);s1.insert(1);s1.insert(4);s1.insert(0);s1.insert(2);cout << "s1 : ";for (auto k : s1){cout << k << " ";}cout << endl;cout << "s2 : ";for (auto k : s2){cout << k << " ";}cout << endl;//交换s1和s2的值s1.swap(s2);cout << "s1 : ";for (auto k : s1){cout << k << " ";}cout << endl;cout << "s2 : ";for (auto k : s2){cout << k << " ";}cout << endl;return 0;
}

        运行结果如下:

        count()函数的定义如下图: 

      

        count函数使用示例如下:

int main()
{//构造一个没有元素的空容器set<int> s1;//s1中插入元素s1.insert(3);s1.insert(1);s1.insert(4);s1.insert(0);s1.insert(2);cout << "s1 : ";for (auto k : s1){cout << k << " ";}cout << endl;cout << s1.count(2) << endl;cout << s1.count(4) << endl;cout << s1.count(6) << endl;cout << s1.count(8) << endl;return 0;
}

        运行结果如下:


📌关联式容器multiset简介 

         我们先来看一下cplusplus.com - The C++ Resources Network网站对set的文档介绍:

        总结一下:

  1. multiset是按照特定顺序存储元素的容器,其中元素是可以重复的。
  2. 在multiset中,元素的value也会识别它(因为multiset中本身存储的就是<value, value>组成的键值对,因此value本身就是key,key就是value,类型为T). multiset元素的值不能在容器中进行修改(因为元素总是const的),但可以从容器中插入或删除。
  3. 在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则进行排序。
  4. multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭代器遍历时会得到一个有序序列。
  5. multiset底层结构为二叉搜索树(红黑树)

        注意:

  1. multiset中再底层中存储的是<value, value>的键值对
  2. mtltiset的插入接口中只需要插入即可
  3. 与set的区别是,multiset中的元素可以重复,set是中value是唯一的
  4. 使用迭代器对multiset中的元素进行遍历,可以得到有序的序列
  5. multiset中的元素不能修改
  6. 在multiset中找某个元素,时间复杂度为$O(log_2 N)$
  7. multiset的作用:可以对元素进行排序

📌关联式容器multiset使用

        multiset的接口是和set一模一样的,区别在于具体的使用上:

        首先,multiset支持插入重复的键值key, 这就意味着multiset没有set的去重作用 :

int main()
{//构造一个没有元素的空容器setset<int> s;s.insert(3);s.insert(1);s.insert(5);s.insert(5);	//插入多个重复键值keys.insert(5);s.insert(4);s.insert(5);s.insert(2);for (auto e : s){cout << e << " ";}cout << endl;//构造一个没有元素的空容器multisetmultiset<int> ms;ms.insert(3);ms.insert(1);ms.insert(5);ms.insert(5);	//插入多个重复键值keyms.insert(5);ms.insert(4);ms.insert(5);ms.insert(2);for (auto e : ms){cout << e << " ";}cout << endl;return 0;
}

        运行结果如下:

        同时,对于set模板里几乎没有什么意义的几个函数接口在multiset这里就可以得到很好的应用了,如:count,equal_range等函数:

        如下代码,我们利用count函数计算multiset中5出现的次数,并利用equal_range函数将其全部删除:

int main()
{//构造一个没有元素的空容器multisetmultiset<int> ms;ms.insert(3);ms.insert(1);ms.insert(5);ms.insert(5);	//插入多个重复键值keyms.insert(5);ms.insert(4);ms.insert(5);ms.insert(2);for (auto e : ms){cout << e << " ";}cout << endl;//计算5出现的次数cout << "5出现的次数: " << ms.count(5) << endl;//删掉所有的5pair<multiset<int>::iterator, multiset<int>::iterator> ret = ms.equal_range(5);	//这里ret的类型直接用auto也行multiset<int>::iterator left = ret.first;multiset<int>::iterator right = ret.second;ms.erase(left, right);for (auto e : ms){cout << e << " ";}cout << endl;return 0;
}

        运行结果如下:


结语

希望这篇关于 STL标准模板库容器set 的博客能对大家有所帮助,欢迎大佬们留言或私信与我交流.

学海漫浩浩,我亦苦作舟!关注我,大家一起学习,一起进步!

相关文章推荐

【C++】模拟实现二叉搜索(排序)树

【数据结构】C语言实现链式二叉树(附完整运行代码)

【数据结构】什么是二叉搜索(排序)树?

【C++】模拟实现priority_queue(优先级队列)

【C++】模拟实现queue

【C++】模拟实现stack

【C++】模拟实现list

【C++】模拟实现vector

【C++】标准库类型vector

【C++】模拟实现string类

【C++】标准库类型string

【C++】构建第一个C++类:Date类

【C++】类的六大默认成员函数及其特性(万字详解)

【C++】什么是类与对象?


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/437983.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

翔云 OCR:发票识别与验真

在数字化时代&#xff0c;高效处理大量文档和数据成为企业和个人的迫切需求。翔云 OCR 作为一款强大的光学字符识别工具&#xff0c;在发票识别及验真方面表现出色&#xff0c;为我们带来了极大的便利。 一、翔云 OCR 简介 翔云 OCR 是一款基于先进的人工智能技术开发的文字识别…

搭建k8s集群服务(kubeadm方式)

准备工作 操作系统版本&#xff1a;CentOS Linux release 7.9.2009 (Core) 虚拟机硬件配置&#xff1a;2核8G内存&#xff08;最低2G&#xff09;&#xff0c;硬盘最低25G&#xff1b; linux内核版本&#xff08;3.10版本尝试失败&#xff09;&#xff1a;5.4.268-1.el7.elr…

基于Java+VUE+echarts大数据智能道路交通信息统计分析管理系统

大数据智能交通管理系统是一种基于Web的系统架构&#xff0c;通过浏览器/服务器&#xff08;B/S&#xff09;模式实现对城市交通数据的高效管理和智能化处理。该系统旨在通过集成各类交通数据&#xff0c;包括但不限于车辆信息、行驶记录、违章情况等&#xff0c;来提升城市管理…

【Python】AudioLazy:基于 Python 的数字信号处理库详解

AudioLazy 是一个用于 Python 的开源数字信号处理&#xff08;DSP&#xff09;库&#xff0c;设计目的是简化信号处理任务并提供更直观的操作方式。它不仅支持基础的滤波、频谱分析等功能&#xff0c;还包含了滤波器、信号生成、线性预测编码&#xff08;LPC&#xff09;等高级…

两个向量所在平面的法线,外积,叉积,行列式

偶尔在一个数学题里面看到求两向量所在平面的法线&#xff0c;常规方法可以通过法线与两向量垂直这一特点&#xff0c;列两个方程求解&#xff1b;另外一种方法可以通过求解两个向量的叉积&#xff0c;用矩阵行列式 (determinant) 的方式&#xff0c;之前还没见过&#xff0c;在…

【计算机网络】传输层UDP和TCP协议

目录 再谈端口号端口号范围划分认识知名端口号查看知名端口号两个问题 UDP协议UDP特点UDP的缓冲区基于UDP的应用层协议 TCP协议TCP协议格式确认应答机制超时重传机制连接管理机制&#xff08;三次握手与四次挥手&#xff09;理解TIME_WAIT状态理解CLOSE_WAIT状态滑动窗口快重传…

【C++】迭代器失效问题解析

✨ Blog’s 主页: 白乐天_ξ( ✿&#xff1e;◡❛) &#x1f308; 个人Motto&#xff1a;他强任他强&#xff0c;清风拂山冈&#xff01; &#x1f525; 所属专栏&#xff1a;C深入学习笔记 &#x1f4ab; 欢迎来到我的学习笔记&#xff01; 一、迭代器失效的概念 迭代器的作用…

【PyTorch】生成对抗网络

生成对抗网络是什么 概念 Generative Adversarial Nets&#xff0c;简称GAN GAN&#xff1a;生成对抗网络 —— 一种可以生成特定分布数据的模型 《Generative Adversarial Nets》 Ian J Goodfellow-2014 GAN网络结构 Recent Progress on Generative Adversarial Networks …

Python | Leetcode Python题解之第450题删除二叉搜索树中的节点

题目&#xff1a; 题解&#xff1a; class Solution:def deleteNode(self, root: Optional[TreeNode], key: int) -> Optional[TreeNode]:cur, curParent root, Nonewhile cur and cur.val ! key:curParent curcur cur.left if cur.val > key else cur.rightif cur i…

解决Excel时出现“被保护单元格不支持此功能“的解决办法,详细喂饭级教程

今天有个朋友发过来一个excel文件&#xff0c;本来想修改表格的内容&#xff0c;但是提示&#xff0c;被保护单元格不支持此功能&#xff0c;对于这个问题&#xff0c;找到一个解决方法&#xff0c;现记录下来&#xff0c;分享给有需要的朋友。 表格文件名为aaa.xls,以WPS为例。…

什么是转义字符

1.什么是转义字符 转义字符是一组特殊的字符&#xff0c;转义字符顾名思义就是&#xff1a;转变原来的意思。 比如&#xff1a;我们有一组字符&#xff0c;其中的n能完整的打印出来&#xff0c;如下&#xff1a; #include <stdio.h> int main() { printf("asnfd&…

Typora解决图片复制到其他博客平台,解决图片显示转存失败(CSDN除外)

目录 一、Typora这个Markdown编辑器的确好用1.1 安装 二、 问题“图片转存失败”2.1 问题具体显示如下&#xff1a;2.2 问题分析&#xff1a;其实就是图片在typora里面是使用的本地路径&#xff0c;因此不显示&#xff0c; 三、解决方案3.1打开Typora&#xff0c;按下述图片显示…

【Verilog学习日常】—牛客网刷题—Verilog企业真题—VL74

异步复位同步释放 描述 题目描述&#xff1a; 请使用异步复位同步释放来将输入数据a存储到寄存器中&#xff0c;并画图说明异步复位同步释放的机制原理 信号示意图&#xff1a; clk为时钟 rst_n为低电平复位 d信号输入 dout信号输出 波形示意图&#xff1a; 输入描…

网络原理-数据链路层

在这一层中和程序员距离比较遥远&#xff0c;除非是做交换机开发&#xff0c;否则不需要了解数据链路层 由AI可知&#xff1a; 数据链路层&#xff08;Data Link Layer&#xff09;是OSI&#xff08;Open Systems Interconnection&#xff09;七层网络模型中的第二层&#xff0…

Elasticsearch 开放推理 API 增加了对 Google AI Studio 的支持

作者&#xff1a;来自 Elastic Jeff Vestal 我们很高兴地宣布 Elasticsearch 的开放推理 API 支持 Gemini 开发者 API。使用 Google AI Studio 时&#xff0c;开发者现在可以与 Elasticsearch 索引中的数据进行聊天、运行实验并使用 Google Cloud 的模型&#xff08;例如 Gemin…

用网络分析仪测试功分器驻波的5个步骤

在射频系统中&#xff0c;功分器的驻波比直接关系到信号的稳定性和传输效率。本文将带您深入了解驻波比的测试方法和影响其结果的因素。 一、功分器驻波比 驻波(Voltage Standing Wave Ratio)&#xff0c;简称SWR或VSWR&#xff0c;是指频率相同、传输方向相反的两种波&#xf…

TCN模型实现电力数据预测

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有&#xff1a;中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等&#xff0c;曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝&#xff0c;拥有2篇国家级人工智能发明专利。 社区特色&a…

macOS 开发环境配置与应用开发

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

mfc140u.dll缺失?快速解决方法全解析,解决mfc140u.dll错误

当你的电脑出现找不到mfc140u.dll的问题&#xff0c;不少用户在使用电脑时陷入了困扰。这个错误提示就像一道屏障&#xff0c;阻挡了用户正常使用某些软件。无论是办公软件、游戏还是专业的设计工具&#xff0c;一旦出现这个问题&#xff0c;都会导致软件无法正常运行。如果您也…

【AIGC】内容创作——AI文字、图像、音频和视频的创作流程

我的主页&#xff1a;2的n次方_ 近年来&#xff0c;生成式人工智能&#xff08;AIGC&#xff0c;Artificial Intelligence Generated Content&#xff09;技术迅速发展&#xff0c;彻底改变了内容创作的各个领域。无论是文字、图像、音频&#xff0c;还是视频&#xff0c;A…