全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)

全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)

目录

    • 全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.基于PSA-TCN-LSTM-Attention的PID搜索算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

一种新的元启发式优化算法–PID搜索算法,PID-based search algorithm (PSA)。该算法基于增量PID算法,通过不断调整系统偏差,使整个种群收敛到最优状态。该成果于2023年12月发表在中科院1区SCI期刊Expert Systems with Applications。
在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目
kim =  2;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439131.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

今日凌晨,ChatGPT重磅更新!—— 我心目中的终极AGI界面

今日凌晨,ChatGPT重磅更新!—— 我心目中的终极AGI界面 我心目中的终极 AGI 界面是一张空白画布(canvas)。 今日凌晨,OpenAI 发布 canvas,一个与 ChatGPT 合作写作和编程的新界面! canvas&…

MySQL 启动失败 (code=exited, status=1/FAILURE) 异常解决方案

目录 前言1. 问题描述2. 查看错误日志文件2.1 确认日志文件路径2.2 查看日志文件内容 3. 定位问题3.1 问题分析 4. 解决问题4.1 注释掉错误配置4.2 重启 MySQL 服务 5. 总结结语 前言 在日常运维和开发过程中,MySQL数据库的稳定运行至关重要。然而,MySQ…

Leetcode—148. 排序链表【中等】

2024每日刷题(171) Leetcode—148. 排序链表 C实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr…

森林火灾检测数据集 7400张 森林火灾 带标注 voc yolo

森林火灾检测数据集 7400张 森林火灾 带标注 voc yolo 森林火灾检测数据集 名称 森林火灾检测数据集 (Forest Fire Detection Dataset) 规模 图像数量:共7780张图像。类别:仅包含一种类别——火源。 数据划分 训练集 (Train):通常占总数据…

SpringBoot整合JPA详解

SpringBoot版本是2.0以上(2.6.13) JDK是1.8 一、依赖 <dependencies><!-- jdbc --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jdbc</artifactId></dependency><!--…

Oracle SQL语句没有过滤条件,究竟是否会走索引??

答案是&#xff1a;可能走索引也可能不走索引&#xff0c;具体要看列的值可不可为null&#xff0c;Oracle不会为所有列的nullable属性都为Y的sql语句走索引。 例子&#xff1a; create table t as select * from dba_objects; CREATE INDEX ix_t_name ON t(object_id, objec…

9.30学习记录(补)

手撕线程池: 1.进程:进程就是运行中的程序 2.线程的最大数量取决于CPU的核数 3.创建线程 thread t1; 在使用多线程时&#xff0c;由于线程是由上至下走的&#xff0c;所以主程序要等待线程全部执行完才能结束否则就会发生报错。通过thread.join()来实现 但是如果在一个比…

SpringBoot助力校园资料分享:快速上手指南

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多学生、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统&#xff0c;它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等&#xff0c;非常适…

多模态—文字生成图片

DALL-E是一个用于文字生成图片的模型&#xff0c;这也是一个很好思路的模型。该模型的训练分为两个阶段&#xff1a; 第一阶段&#xff1a;图片经过编码器编码为图片向量&#xff0c;当然我们应该注意这个过程存在无损压缩&#xff08;图片假设200*200&#xff0c;如果用one-h…

MATLAB|基于多主体主从博弈的区域综合能源系统低碳经济优化调度

目录 主要内容 程序亮点&#xff1a; 模型研究 一、综合能源模型 二、主从博弈框架 部分代码 结果一览 下载链接 主要内容 程序参考文献《基于多主体主从博弈的区域综合能源系统低碳经济优化调度》&#xff0c;采用了区域综合能源系统多主体博弈协同优化方…

Redis-预热雪崩击穿穿透

预热雪崩穿透击穿 缓存预热 缓存雪崩 有这两种原因 redis key 永不过期or过期时间错开redis 缓存集群实现高可用 主从哨兵Redis Cluster开启redis持久化aof&#xff0c;rdb&#xff0c;尽快恢复集群 多缓存结合预防雪崩&#xff1a;本地缓存 ehcache redis 缓存服务降级&…

国产RISC-V案例分享,基于全志T113-i异构多核平台!

RISC-V核心优势 全志T113-i是一款双核Cortex-A7@1.2GHz国产工业级处理器平台,并内置玄铁C906 RISC-V和HiFi4 DSP双副核心,可流畅运行Linux系统与Qt界面,并已适配OpenWRT系统、Docker容器技术。 而其中的RISC-V属于超高能效副核心,主频高达1008MHz,标配内存管理单元,可运…

程序员如何在 AI 时代保持核心竞争力

前言 随着 AIGC 大语言模型的不断涌现&#xff0c;AI 辅助编程工具的普及正在深刻改变程序员的工作方式。在这一趋势下&#xff0c;程序员面临着新的挑战与机遇&#xff0c;需要思考如何应对以保持并提升自身的核心竞争力。 目录 一、AI 对编程工作的影响 &#xff08;一&…

一“填”到底:深入理解Flood Fill算法

✨✨✨学习的道路很枯燥&#xff0c;希望我们能并肩走下来! 文章目录 目录 文章目录 前言 一 floodfill算法是什么&#xff1f; 二 相关OJ题练习 2.1 图像渲染 2.2 岛屿数量 2.3 岛屿的最大面积 2.4 被围绕的区域 2.5 太平洋大西洋水流问题 2.6 扫雷游戏 2.7 衣橱整…

matlab r2024a、matlab R2024b保姆级安装教程

​ 1.安装步骤 右键【setup.exe】以【管理员身份运行】 点击【高级选项】-【我有文件安装密钥】 点击【是】-【下一步】 输入密钥【21471-07182-41807-00726-32378-34241-61866-60308-44209-03650-51035-48216-24734-36781-57695-35731-64525-44540-57877-31100-06573-50736-…

GO网络编程(三):海量用户通信系统1:登录功能

一、准备工作 需求分析 1)用户注册 2)用户登录 3)显示在线用户列表 4)群聊(广播) 5)点对点聊天 6)离线留言 主界面 首先&#xff0c;在项目根目录下初始化mod&#xff0c;然后按照如下结构设计目录&#xff1a; 海量用户通信系统/ ├── go.mod ├── client/ │ ├──…

数据结构与算法(七)静态链表

目录 前言 一、静态链表的引入 二、线性表的静态链表存储结构 三、静态链表的插入操作 四、静态链表的删除操作 五、静态链表的优缺点总结 1、优点 2、缺点 3、小结 六、单链表小结——Tecent面试题 1、普通解法&#xff1a; 2、高级解法&#xff1a; 前言 静态链表…

Web安全 - 重放攻击(Replay Attack)

文章目录 OWASP 2023 TOP 10导图1. 概述2. 重放攻击的原理攻击步骤 3. 常见的重放攻击场景4. 防御重放攻击的技术措施4.1 使用时效性验证&#xff08;Time-Based Tokens&#xff09;4.2 单次令牌机制&#xff08;Nonce&#xff09;4.3 TLS/SSL 协议4.4 HMAC&#xff08;哈希消息…

C#基于SkiaSharp实现印章管理(10)

向PDF文件插入印章图片比之前实现的向图片文件插入印章麻烦得多。   最初的想法是使用PDF浏览控件在线打开PDF文件&#xff0c;然后在控件中实现鼠标移动时动态显示印章&#xff0c;点击鼠标时向当前PDF页面的鼠标点击位置插入图片。由于是.net 8的Winform项目&#xff0c;选…