241007深度学习之LeNet

目录

    • 1.LeNet介绍
    • 2.组成
    • 3.代码实现

1.LeNet介绍

LeNet是最早发布的卷积神经网络之一,他是由AT&T贝尔实验室的研究员Yann LeCun在1989年提出的(并且以其命名),目的是识别图像中手写数字.当时,Yann LeCun发表了第一篇通过反向传播成功训练卷积神经网络的研究论文,这项工作代表了十多年来神经网络研究开发的成果.
当时,LeNet取得了与支持向量机(support vector machines)性能相媲美的成果,成为监督学习的主流方法。 LeNet被广泛用于自动取款机(ATM)机中,帮助识别处理支票的数字。 时至今日,一些自动取款机仍在运行Yann LeCun和他的同事Leon Bottou在上世纪90年代写的代码呢!

2.组成

总体来看,LeNet(LeNet-5)由两个部分组成:

1️⃣卷积编码器:由两个卷积层组成;

2️⃣全连接层密集块:由三个全连接层组成。

该架构如图所示。
图6.6.1 LeNet中的数据流。输入是手写数字,输出为10种可能结果的概率。¶ 图1 LeNet中的数据流。输入是手写数字,输出为10种可能结果的概率

3.代码实现

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10))

我们对原始模型做了一点小改动,去掉了最后一层的高斯激活。除此之外,这个网络与最初的LeNet-5一致。

下面,我们将一个大小为28*28的单通道(黑白)图像通过LeNet。通过在每一层打印输出的形状,我们可以检查模型,以确保其操作与我们期望的 图2一致。
在这里插入图片描述
图2 LeNet简化版
代码如下:

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape: \t',X.shape)

result below:

Conv2d output shape: torch.Size([1, 6, 28, 28]) Sigmoid output
shape: torch.Size([1, 6, 28, 28]) AvgPool2d output shape:
torch.Size([1, 6, 14, 14]) Conv2d output shape: torch.Size([1,
16, 10, 10]) Sigmoid output shape: torch.Size([1, 16, 10, 10])
AvgPool2d output shape: torch.Size([1, 16, 5, 5]) Flatten output
shape: torch.Size([1, 400]) Linear output shape:
torch.Size([1, 120]) Sigmoid output shape: torch.Size([1, 120])
Linear output shape: torch.Size([1, 84]) Sigmoid output shape:
torch.Size([1, 84]) Linear output shape: torch.Size([1, 10])
请注意,在整个卷积块中,与上一层相比,每一层特征的高度和宽度都减小了。 第一个卷积层使用2个像素的填充,来补偿
卷积核导致的特征减少。 相反,第二个卷积层没有填充,因此高度和宽度都减少了4个像素。 随着层叠的上升,通道的数量从输入时的1个,增加到第一个卷积层之后的6个,再到第二个卷积层之后的16个。 同时,每个汇聚层的高度和宽度都减半。最后,每个全连接层减少维数,最终输出一个维数与结果分类数相匹配的输出。
4.train
现在我们已经实现了LeNet,让我们看看LeNet在Fashion-MNIST数据集上的表现。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

虽然卷积神经网络的参数较少,但与深度的多层感知机相比,它们的计算成本仍然很高,因为每个参数都参与更多的乘法。 通过使用GPU,可以用它加快训练。

def evaluate_accuracy_gpu(net, data_iter, device=None): #@save"""使用GPU计算模型在数据集上的精度"""if isinstance(net, nn.Module):net.eval()  # 设置为评估模式if not device:device = next(iter(net.parameters())).device# 正确预测的数量,总预测的数量metric = d2l.Accumulator(2)with torch.no_grad():for X, y in data_iter:if isinstance(X, list):# BERT微调所需的(之后将介绍)X = [x.to(device) for x in X]else:X = X.to(device)y = y.to(device)metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]

为了使用GPU,我们还需要一点小改动。 与 3.6节中定义的train_epoch_ch3不同,在进行正向和反向传播之前,我们需要将每一小批量数据移动到我们指定的设备(例如GPU)上。
如下所示,训练函数train_ch6也类似于 3.6节中定义的train_ch3。 由于我们将实现多层神经网络,因此我们将主要使用高级API。 以下训练函数假定从高级API创建的模型作为输入,并进行相应的优化。 我们使用在 4.8.2.2节中介绍的Xavier随机初始化模型参数。 与全连接层一样,我们使用交叉熵损失函数和小批量随机梯度下降。
代码如下:

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):"""用GPU训练模型(在第六章定义)"""def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)optimizer = torch.optim.SGD(net.parameters(), lr=lr)loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])timer, num_batches = d2l.Timer(), len(train_iter)for epoch in range(num_epochs):# 训练损失之和,训练准确率之和,样本数metric = d2l.Accumulator(3)net.train()for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad()X, y = X.to(device), y.to(device)y_hat = net(X)l = loss(y_hat, y)l.backward()optimizer.step()with torch.no_grad():metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop()train_l = metric[0] / metric[2]train_acc = metric[1] / metric[2]if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None))test_acc = evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')

现在,我们训练和评估LeNet-5模型。

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

loss 0.469, train acc 0.823, test acc 0.779
55296.6 examples/sec on cuda:0

在这里插入图片描述
5.小结
1.卷积神经网络(CNN)是一类使用卷积层的网络。

2.在卷积神经网络中,我们组合使用卷积层、非线性激活函数和汇聚层。

3.为了构造高性能的卷积神经网络,我们通常对卷积层进行排列,逐渐降低其表示的空间分辨率,同时增加通道数。

4.在传统的卷积神经网络中,卷积块编码得到的表征在输出之前需由一个或多个全连接层进行处理。

5.LeNet是最早发布的卷积神经网络之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/441206.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于CSS Grid布局

关于CSS Grid布局 实际效果参考 参考代码 <template><view class"baseInfo"><up-image class"cover" height"160rpx" width"120rpx" :src"bookInfo.cover"><template #error><view style"…

基于Zynq SDIO WiFi移植二(支持2.4/5G)

1 SDIO设备识别 经过编译&#xff0c;将移植好的uboot、kernel、rootFS、ramdisk等烧录到Flash中&#xff0c;上电启动&#xff0c;在log中&#xff0c;可看到sdio设备 [ 1.747059] mmc1: queuing unknown CIS tuple 0x01 (3 bytes) [ 1.761842] mmc1: queuing unknown…

卫星测绘AI技术-立哥尖端科研

分布式微波干涉测绘卫星是以多颗满足一定编队构形的卫星为平台&#xff0c;以合成孔径雷达 和高精度星间相对状态测量设备等为有效载荷&#xff0c;具备全天时、全天候获取雷达干涉影像数 据&#xff0c;快速测制全球数字表面模型、数字雷达正射影像等测绘产品能力的卫星系统…

点可云ERP进销存V8版本——其他支出单使用说明

其他支出单用于记录除采购内容外其支出资金&#xff0c;如&#xff1a;人工运输费、安装维修服务、差旅报销等。新增保存之后&#xff0c;对应资金账户将减少金额额度&#xff0c;并做存储记录&#xff0c;可在现金银行报表中体现。 新增操作 接下来我们讲解新增单据步骤。如上…

PHP 基础语法详解

PHP 基础语法详解 PHP&#xff08;全称&#xff1a;PHP: Hypertext Preprocessor&#xff09;是一种广泛应用的服务器端脚本语言&#xff0c;特别适用于 Web 开发。它易于学习&#xff0c;且能够快速构建动态网站。本篇博客将详细介绍 PHP 的基础语法&#xff0c;帮助初学者理…

[OS] 编译 Linux 内核

编译 Linux 内核&#xff1a;详细教程与 Kthreads 入门结合 我们将学习如何编译 Linux 内核&#xff0c;同时结合 Kthreads 的知识来理解各个步骤的目的。对于虚拟环境下的开发环境配置&#xff0c;本文将为你提供逐步指导。 1. 下载内核源代码 首先&#xff0c;我们需要从官…

第 1 章 MyBatis快速入门

1.1 ORM简介 ORM&#xff08;Object Relational Mapping&#xff0c;对象——关系映射&#xff09;框架的主要功能是根据映射配置文件&#xff0c;完成数据在对象模型与关系模型之间的映射&#xff0c;同时出屏蔽了连接数据库、创建 Statement 对象、执行 SQL、读取 ResultSet…

(Linux驱动学习 - 8).信号异步通知

一.异步通知简介 1.信号简介 信号类似于我们硬件上使用的“中断”&#xff0c;只不过信号是软件层次上的。算是在软件层次上对中断的一种模拟&#xff0c;驱动可以通过主动向应用程序发送信号的方式来报告自己可以访问了&#xff0c;应用程序获取到信号以后就可以从驱动设备中…

【技术】Jaskson的序列化与反序列化

文章目录 概念解释1.Jasksona.JSONJSON 的基本特点JSON 的基本结构JSON 示例 b.ObjectMapper类 2.序列化与反序列化a.序列化对象序列化集合序列化ListSetMap b.反序列化反序列化单个对象反序列化集合对象 概念解释 1.Jaskson Jackson 是一个用于处理 JSON 数据的 Java 库,所以…

k8s实战-1

k8s实战-1 一、资源创建方式1.命令行2.yaml 二、命名空间三、Pod总结 一、资源创建方式 1.命令行 就是直接通过命令的方式创建&#xff0c;比如我要创建namespace&#xff0c; kubectl create namespace hello删除&#xff1a; kubectl delete -f hello2.yaml 简单来说&am…

用java编写飞机大战

游戏界面使用JFrame和JPanel构建。背景图通过BG类绘制。英雄机和敌机在界面上显示并移动。子弹从英雄机发射并在屏幕上移动。游戏有四种状态&#xff1a;READY、RUNNING、PAUSE、GAMEOVER。状态通过鼠标点击进行切换&#xff1a;点击开始游戏&#xff08;从READY变为RUNNING&am…

无人机单目+激光+IMU复杂弧形(隧道)退化场景SLAM技术详解

无人机在复杂弧形&#xff08;如隧道&#xff09;退化场景中的SLAM&#xff08;同时定位与地图构建&#xff09;技术&#xff0c;结合单目相机、激光雷达&#xff08;LiDAR&#xff09;和惯性测量单元&#xff08;IMU&#xff09;时&#xff0c;能够显著提升定位与建图的准确性…

在忘记密码的情况下重新访问手机?5种忘记密码解锁Android手机的方法

无需密码即可访问Android手机。 即使你忘记了密码&#xff0c;你也可以解锁你的Android手机&#xff0c;但你通常需要将手机恢复出厂设置。 您可以通过执行出厂恢复或使用“查找我的设备”网站解锁大多数Android手机。 如果你不再有密码&#xff0c;这里有五种解锁安卓手机的…

E37.【C语言】动态内存管理练习题

目录 1. 答案速查 分析 源代码分析 反汇编代码分析(底层) 2. 答案速查 分析 3. 答案速查 分析 VS逐步调试 1. 求下列代码的执行结果 #include <stdio.h> char* GetMemory(void) {char p[] "hello world";return p; }void Test(void) {char* str…

分层解耦-03.IOCDI-入门

一. IOC&DI入门 二.控制转移注解Component 因为dao和service接口的实现类对象需要传入到service和controller中&#xff0c;因此需要将dao和service代码加上Component注解&#xff0c;使之实现控制反转&#xff0c;将实现类对象交给IOC容器管理&#xff0c;成为IOC容器中…

Web安全 - 阶段性总结回顾_风险评估

文章目录 OWASP 2023 TOP 10用户数据的威胁评估密码盗窃XSS 漏洞SQL 注入CSRF 漏洞 资产数据的威胁评估SSRF 漏洞反序列化漏洞插件漏洞后门 认证和授权的安全防护检测与过滤加强认证补丁管理 进一步防护手段最小权限原则WAFIDS 小结 OWASP 2023 TOP 10 OWASP Top 10 概述 OWASP…

数据结构与算法——动态规划算法简析

1.初步了解动态规划 由于本篇博客属于动态规划的初阶学习&#xff0c;所以大多都是简单的表示&#xff0c;更深层次的学术用语会在之后深度学习动态规划之后出现&#xff0c;本文主要是带各位了解一下动态规划的大致框架 1.1状态表示 通常的我们会开辟一个dp数组来存储需要表示…

C++ WebDriver扩展

概述 WebDriver协议基于HTTP&#xff0c;使用JSON进行数据传输&#xff0c;定义了client与driver之间的通信标准。无论client的实现语言&#xff08;如Java或C#&#xff09;&#xff0c;都能通过协议中的endpoints准确指示driver执行各种操作&#xff0c;覆盖了Selenium的所有功…

【C语言】预处理指令详解

目录 一、预定义符号 二、#define 定义常量 三、#define 定义宏 &#xff08;1&#xff09;宏定义的使用 &#xff08;2&#xff09;带副作用的宏参数 &#xff08;3&#xff09;宏替换的规则 &#xff08;4&#xff09;宏与函数对比 &#xff08;5&#xff09;#和## …

基于单片机的书库环境监测

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机&#xff0c;采用DHT11湿度传感器检测湿度&#xff0c;DS18B20温度传感器检测温度&#xff0c; 采用滑动变阻器连接数模转换器模拟二氧化碳和氧气浓度检测&#xff0c;各项数值通过lc…