第二十二天|回溯算法| 理论基础,77. 组合(剪枝),216. 组合总和III,17. 电话号码的字母组合

目录

回溯算法理论基础

1.题目分类

2.理论基础

3.回溯法模板

补充一个JAVA基础知识

什么时候用ArrayList什么时候用LinkedList

77. 组合

未剪枝优化

剪枝优化

216. 组合总和III

17. 电话号码的字母组合


回溯法的一个重点理解:细细理解这句话!

回溯法抽象为树形结构后,其遍历过程就是:for循环横向遍历,递归纵向遍历,回溯不断调整结果集

回溯算法理论基础

1.题目分类

2.理论基础

  • 什么是回溯算法

回溯和递归是相辅相成的。

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

  • 回溯法的效率

回溯法其实就是暴力查找,并不是什么高效的算法。

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

  • 回溯法可以解决几类问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

3.回溯法模板

回溯法解决的问题都可以抽象为树形结构(N叉树)。

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

回溯三部曲:

  • 回溯函数模板返回值以及参数

回溯算法中函数返回值一般为void。先写逻辑,然后需要什么参数,就填什么参数。

  • 回溯函数终止条件

一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

  • 回溯搜索的遍历过程

for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

补充一个JAVA基础知识

什么时候用ArrayList什么时候用LinkedList

1. 存储结构与基本概念

  • ArrayList:

    • 底层是基于数组的数据结构。
    • 元素是连续存储的,这意味着可以通过索引快速访问元素。
    • 如果数组容量不足时,ArrayList会创建一个更大的数组并将原数组的元素复制到新数组中。
  • LinkedList:

    • 底层是基于双向链表的数据结构。
    • 每个节点存储元素值及前一个和后一个节点的引用。
    • 元素在内存中不必是连续的,增删节点时不需要像ArrayList那样复制数组。

2. 选择依据

  • 使用ArrayList的场景

    • 需要频繁访问元素:由于ArrayList基于数组结构,可以通过索引在O(1)时间内访问任意元素,因此如果你的主要操作是访问而不是插入和删除,ArrayList会更适合。
    • 元素数量较多,但插入和删除操作较少ArrayList在添加元素时,只要不超出容量,添加时间是O(1),但当数组需要扩容时,时间复杂度会变为O(n)。
    • 遍历操作较多ArrayList因为底层是连续内存存储,遍历时缓存命中率较高,因此在遍历时性能会比LinkedList好。
  • 使用LinkedList的场景

    • 需要频繁的插入和删除操作LinkedList在头部或中间插入/删除元素时,不需要移动其他元素,只需要调整指针即可,效率更高。如果你的操作集中在头部或尾部,LinkedList会表现更好。
    • 需要在列表的任意位置频繁插入/删除:在这种情况下,LinkedList可以通过调整节点的指向来高效完成操作,而ArrayList则需要移动元素来维护数组的连续性。
    • 存储的元素数量不大且不需要频繁访问LinkedList的随机访问时间是O(n),因此如果需要频繁通过索引访问元素,LinkedList性能较差。

3. 总结选择

  • 如果主要是读操作(访问元素):选择ArrayList
  • 如果主要是写操作(插入、删除),并且特别是在头部或中间:选择LinkedList
  • 如果数据规模大,并且需要高效的遍历:ArrayList更好。
  • 如果数据规模小,并且操作模式比较多变:LinkedList的灵活性更好。

4. 示例应用场景

  • 使用ArrayList:

    List<String> arrayList = new ArrayList<>();
    arrayList.add("a");  // O(1) - 添加元素
    arrayList.get(0);    // O(1) - 通过索引访问
  • 使用LinkedList:

    LinkedList<String> linkedList = new LinkedList<>();
    linkedList.addFirst("a");  // O(1) - 在头部插入
    linkedList.removeFirst();  // O(1) - 从头部删除

77. 组合

本题是回溯法的经典题目。

把组合问题抽象为如下树形结构:

图中每次搜索到了叶子节点,我们就找到了一个结果。

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

未剪枝优化

回溯法三部曲

  • 递归函数的返回值以及参数
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。startIndex 就是防止出现重复的组合。需要startIndex来记录下一层递归,搜索的起始位置。

  • 回溯函数终止条件

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

此时用result二维数组,把path保存起来,并终止本层递归。

if (path.size() == k) {result.push_back(path);return;
}
  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

整体代码如下:

    class Solution {List<List<Integer>> result = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> combine(int n, int k) {// 未剪枝优化backtracking(n, k, 1);return result;}// 递归的每一层在执行完所有可能的路径(所有从startIndex到n的i)之后,会自然退出当前循环,并结束当前的backtracking调用。public void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.add(new ArrayList<>(path));return;}for (int i = startIndex; i <= n; i++) {path.add(i);backtracking(n, k, i + 1);// 在递归调用返回之后,path.removeLast()会将最后添加的元素移除,以准备下一轮循环中添加不同的元素。path.removeLast();}}}

剪枝优化

剪枝的目标是减少不必要的递归调用,避免继续探索那些不可能满足条件的路径,从而提高效率。

来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。

这么说有点抽象,如图所示:

可以剪枝的地方就在递归中每一层的for循环所选择的起始位置

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 还需要的元素个数为: k - path.size();

  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

所以优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

为什么是 n - (k - path.size()) + 1(重点理解一下)

  • n - (k - path.size()) + 1的含义是:

    • k - path.size():当前还需要选择的元素数量。
    • n - (k - path.size()):表示当前可选择元素的最大起始位置,即从这个位置开始,剩余的元素刚好足够填充到k个。
    • +1是为了让i的范围包含这个起始位置。
  • 例如,如果n = 5k = 3,并且当前path.size() = 1,也就是已经选择了一个元素,还需要选择2个元素。

    • 此时,k - path.size() = 3 - 1 = 2
    • n - (k - path.size()) = 5 - 2 = 3
    • 所以,i的最大值是3 + 1 = 4
    • 换句话说,从i = 4开始时,只有45两个元素可选,这正好可以凑齐3个元素的组合。

剪枝示例进一步理解:

假设n = 5k = 3,我们在不同的递归层次下看i的取值范围:

  • path.size() = 0(还没选任何元素)时:

    • 需要选k = 3个元素。
    • 可选择范围是:i <= 5 - (3 - 0) + 1 = 3,所以i可以从13
    • 选择1时,递归进入下一层。
  • path.size() = 1(已选择1)时:

    • 需要再选2个元素。
    • 可选择范围是:i <= 5 - (3 - 1) + 1 = 4,所以i可以从24
  • path.size() = 2(已选择1, 2)时:

    • 需要再选1个元素。
    • 可选择范围是:i <= 5 - (3 - 2) + 1 = 5,所以i可以从35
  • 以此类推,当path.size() == k时,就停止递归,将结果存入result

优化后整体代码如下:

class Solution {List<List<Integer>> result = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> combine(int n, int k) {combineHelper(n, k, 1);return result;}/*** 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex* @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。*/private void combineHelper(int n, int k, int startIndex){//终止条件if (path.size() == k){result.add(new ArrayList<>(path));return;}for (int i = startIndex; i <= n - (k - path.size()) + 1; i++){path.add(i);combineHelper(n, k, i + 1);path.removeLast();}}
}

216. 组合总和III

本题就是在77基础上多了一个求和的限制罢了,简单。

注意:处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减

这里我自己写的时候漏了一个sum -= i的回溯

    class Solution {List<List<Integer>> result = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();int sum = 0;public List<List<Integer>> combinationSum3(int k, int n) {backTrackingSum(k, n, 1);return result;}private void backTrackingSum(int k, int n, int startIndex) {if (sum > n) return; // 剪枝if (path.size() == k) {if (sum == n) {result.add(new ArrayList<>(path));}return;}// 剪枝 9 - (k - path.size()) + 1for (int i = startIndex; i <= 10 - (k - path.size()); i++) {path.add(i);sum += i;backTrackingSum(k, n, i + 1);sum -= i;  // 回溯path.removeLast(); //回溯}}}
// 上面剪枝 i <= 9 - (k - path.size()) + 1; 如果还是不清楚
// 也可以改为 if (path.size() > k) return; 执行效率上是一样的
class Solution {LinkedList<Integer> path = new LinkedList<>();List<List<Integer>> ans = new ArrayList<>();public List<List<Integer>> combinationSum3(int k, int n) {build(k, n, 1, 0);return ans;}private void build(int k, int n, int startIndex, int sum) {if (sum > n) return;if (path.size() > k) return;if (sum == n && path.size() == k) {ans.add(new ArrayList<>(path));return;}for(int i = startIndex; i <= 9; i++) {path.add(i);sum += i;build(k, n, i + 1, sum);sum -= i;path.removeLast();}}
}

17. 电话号码的字母组合

本题需要多理解一下递归逻辑,看着代码

本题就是要解决如下三个问题:

  1. 数字和字母如何映射
  2. 两个字母就两个for循环,三个字符我就三个for循环,以此类推,然后发现代码根本写不出来
  3. 输入1 * #按键等等异常情况

数字和字母如何映射

可以使用map或者定义一个二维数组,例如:string letterMap[10],来做映射。

回溯法来解决n个for循环的问题

回溯三部曲:

  • 确定回溯函数参数

首先需要一个字符串s来收集叶子节点的结果,然后用一个字符串数组result保存起来。

参数指定是有题目中给的string digits,然后还要有一个参数就是int型的index。

这个index是记录遍历第几个数字了,就是用来遍历digits的(题目中给出数字字符串),同时index也表示树的深度。

  • 确定终止条件

终止条件就是如果index 等于 输入的数字个数(digits.size)了,就收集结果,结束本层递归。

  • 确定单层遍历逻辑
int digit = digits[index] - '0';        // 将index指向的数字转为int
string letters = letterMap[digit];      // 取数字对应的字符集
for (int i = 0; i < letters.size(); i++) {s.push_back(letters[i]);            // 处理backtracking(digits, index + 1);    // 递归,注意index+1,一下层要处理下一个数字了s.pop_back();                       // 回溯
}

整体代码如下。需要多理解一下:

    class Solution {//设置全局列表存储最后的结果List<String> list = new ArrayList<>();public List<String> letterCombinations(String digits) {if (digits == null || digits.length() == 0) {return list;}//初始对应所有的数字,为了直接对应2-9,新增了两个无效的字符串""String[] numString = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};//迭代处理backTraciking(digits, numString, 0);return list;}//每次迭代获取一个字符串,所以会涉及大量的字符串拼接,所以这里选择更为高效的 StringBuilderStringBuilder temp = new StringBuilder();//比如digits如果为"23",num 为0,则str表示2对应的 abcpublic void backTraciking(String digits, String[] numString, int num) {//遍历全部一次记录一次得到的字符串if (num == digits.length()) {list.add(temp.toString());return;}//str 表示当前num对应的字符串//获取当前数字对应的字母字符串:String str = numString[digits.charAt(num) - '0'],//digits.charAt(num) 获取当前 num 指向的数字字符,通过减去字符 '0' 转换为对应的数组索引,得到当前数字对应的字符串。String str = numString[digits.charAt(num) - '0'];for (int i = 0; i < str.length(); i++) {temp.append(str.charAt(i));//递归,处理下一层backTraciking(digits, numString, num + 1);//剔除末尾的继续尝试temp.deleteCharAt(temp.length() - 1);}}}

第二十二天的总算是结束了,直冲Day23!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/443212.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Linux从小白到高手》理论篇:Linux的进程管理详解

本篇将介绍Linux的进程管理相关知识&#xff0c;并将深入介绍Linux的进程间相互通信。 进程就是运行中的程序&#xff0c;一个运行着的程序&#xff0c;可能有多个进程。 比如Oracle DB&#xff0c;启动Oracle实例服务后&#xff0c;就会有多个进程。 Linux进程分类 在 Linux…

五、Python基础语法(程序的输入和输出)

一、输入 输入&#xff1a;输入就是获取键盘输入的数据&#xff0c;使用input()函数。代码会从上往下执行&#xff0c;当遇到input()函数&#xff0c;就会暂停执行&#xff0c;输入内容后&#xff0c;敲回车键&#xff0c;表示本次的输入结束。input函数得到的数据类型都是字符…

Kali Linux中安装配置影音资源下载神器Amule

一、Debian系列Linux安装amule命令&#xff1a; sudo apt update sudo apt-get install amule amule-utils 二、配置Amule的要点&#xff1a; 1、首次运行Amule&#xff0c;提示是否下载服务器列表&#xff0c;点击是。 2、搜索选项的类型选择全球&#xff0c;类型的默认选项…

cs61b学习 part3

如果你有许多list&#xff0c;这里将会是大量的时间&#xff0c;我指的是对于单向链表查找时间复杂度O(N)相对于数组O(1)的时间复杂度会慢一些 所以这究竟是顺序表的编写还是链表的改进? IntList public class IntList {public int first;public IntList rest;public IntLis…

后端增删改查的基本应用——一个简单的货物管理系统

最终效果&#xff0c;如图所示&#xff1a; 如果想要进行修改操作&#xff0c;可点击某栏修改选项&#xff0c;会在本表格下方弹出修改的具体操作界面&#xff08;点击前隐藏&#xff09;&#xff0c;并且目前的信息可复现在修改框内。 本篇文章通过该项目将后端和前端结合起来…

编译链接的过程发生了什么?

一&#xff1a;程序的翻译环境和执行环境 在 ANSI C 的任何一种实现中&#xff0c;存在两个不同的环境。 第 1 种是翻译环境&#xff0c;在这个环境中源代码被转换为可执行的机器指令。 第 2 种是执行环境&#xff0c;它用于实际执行代码 也就是说&#xff1a;↓ 1&#xff1…

微信小程序启动不起来,报错凡是以~/包名/*.js路径的文件,都找不到,试过网上一切方法,最终居然这么解决的,【避坑】命运的齿轮开始转动

app.json "resolveAlias": {"~/*": "/*"},文件代码也没有问题&#xff0c;网上的方法试过来了&#xff0c;大模型AI也问过遍&#xff0c;熬夜到凌晨2点半&#xff0c;最不可思议的是居然是因为微信开发者工具版本的问题&#xff0c;我真的是笑死…

网站排名,让网站快速有排名的几个方法

要让网站快速获得并提升排名&#xff0c;需要综合运用一系列专业策略和技术&#xff0c;这些策略涵盖了内容优化、技术调整、外链建设、用户体验提升等多个方面。以下是让网站快速有排名的几个方法&#xff1a; 1.内容为王&#xff1a;创造高质量、有价值的内容 -深入…

南京大学《软件分析》李越, 谭添——1. 导论

导论 主要概念: soundcompletePL领域概述 动手学习 本节无 文章目录 导论1. PL(Programming Language) 程序设计语言1.1 程序设计语言的三大研究方向1.2 与静态分析相关方向的介绍与对比静态程序分析动态软件测试形式化(formal)语义验证(verification) 2. 静态分析:2.1莱斯…

Redis数据库与GO(一):安装,string,hash

安装包地址&#xff1a;https://github.com/tporadowski/redis/releases 建议下载zip版本&#xff0c;解压即可使用。解压后&#xff0c;依次打开目录下的redis-server.exe和redis-cli.exe&#xff0c;redis-cli.exe用于输入指令。 一、基本结构 如图&#xff0c;redis对外有个…

k8s的安装和部署

配置三台主机&#xff0c;分别禁用各个主机上的swap&#xff0c;并配置解析 systemctl mask swap.target swapoff -a vim /etc/fstab配置这三个主机上的主机以及harbor仓库的主机 所有主机设置docker的资源管理模式为system [rootk8s-master ~]# vim /etc/docker/daemon.json…

为什么推荐你一定要弄懂千门八将108局,学会做局思维的人有多么的厉害?

在纷繁复杂的社会与商业环境中&#xff0c;能够洞悉事物本质、预见趋势并巧妙布局的人&#xff0c;往往能在竞争中脱颖而出&#xff0c;成为时代的弄潮儿。而“千门八将108局”这一古老而深邃的智慧体系&#xff0c;不仅蕴含了中国传统文化中对于策略、心理学、人际交往的深刻理…

PCL 提取点云边界

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 计算法向量 2.1.2 提取边界点 2.1.3 可视化边界点 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接&#xff1a; PCL点云算法与项目实战案例汇总&#xff0…

动手学深度学习(李沐)PyTorch 第 6 章 卷积神经网络

李宏毅-卷积神经网络CNN 如果使用全连接层&#xff1a;第一层的weight就有3*10^7个 观察 1&#xff1a;检测模式不需要整张图像 很多重要的pattern只要看小范围即可 简化1&#xff1a;感受野 根据观察1 可以做第1个简化&#xff0c;卷积神经网络会设定一个区域&#xff0c…

SolarWinds中如何添加华为交换机实现网络管理

号主&#xff1a;老杨丨11年资深网络工程师&#xff0c;更多网工提升干货&#xff0c;请关注公众号&#xff1a;网络工程师俱乐部 下午好&#xff0c;我的网工朋友。 SolarWinds作为一款广受好评的网络管理软件&#xff0c;它提供了全面的网络配置、监控和管理解决方案&#x…

组织病理学图像中的再识别|文献速递--基于多模态-半监督深度学习的病理学诊断与病灶分割

Title 题目 Re-identification from histopathology images 组织病理学图像中的再识别 01 文献速递介绍 在光学显微镜下评估苏木精-伊红&#xff08;H&E&#xff09;染色切片是肿瘤病理诊断中的标准程序。随着全片扫描仪的出现&#xff0c;玻片切片可以被数字化为所谓…

【Spring】“请求“ 之传递单个参数、传递多个参数和传递对象

文章目录 请求1. 传递单个参数注意事项1 . 正常传递参数2 . 不传递 age 参数3 . 传递参数类型不匹配 2. 传递多个参数3. 传递对象 请求 访问不同的路径&#xff0c;就是发送不同的请求。在发送请求时&#xff0c;可能会带一些参数&#xff0c;所以学习 Spring 的请求&#xff…

【093】基于SpringBoot+Vue实现的精品水果线上销售系统

系统介绍 视频演示 基于SpringBootVue实现的精品水果线上销售系统&#xff08;有文档&#xff09; 基于SpringBootVue实现的精品水果线上销售系统采用前后端分离的架构方式&#xff0c;系统设计了管理员、商家、用户三种角色&#xff0c;实现了公告类型管理、商家信誉类型管理…

自由学习记录

约束的泛型通配符? Java中的泛型 xiaomi和byd都继承了car&#xff0c;但是只是这两个类是car的子类而已&#xff0c;而arraylist<xiaomi> ,arraylist<byd> 两个没有半毛钱继承关系 所以传入的参数整体&#xff0c;是car的list变形&#xff0c;里面的确都能存car…

SDK4(note下)

以下代码涉及到了很多消息的处理&#xff0c;有些部分注释掉了&#xff0c;主要看代码 #include <windows.h> #include<tchar.h> #include <stdio.h> #include <strsafe.h> #include <string> #define IDM_OPEN 102 /*鼠标消息 * 键盘消息 * On…