知识图谱入门——7:阶段案例:使用 Protégé、Jupyter Notebook 中的 spaCy 和 Neo4j Desktop 搭建知识图谱

在 Windows 环境中结合使用 ProtégéJupyter Notebook 中的 spaCyNeo4j Desktop,可以高效地实现从自然语言处理(NLP)到知识图谱构建的全过程。本案例将详细论述环境配置、步骤实现以及一些扩展和不足之处。
源文件已上传我的资源区。

文章目录

  • 1. 环境准备
    • 1.1 Neo4j Desktop 安装和配置
    • 1.2 安装并启动 Protégé
    • 1.3 配置 spaCy 环境(Jupyter Notebook)
      • 1.3.1 安装 spaCy
      • 1.3.2 安装 Jupyter 和 ipykernel
    • 1.4 启动 Jupyter Notebook
  • 2. 案例实现步骤
    • 2.1 数据示例
    • 2.2 使用 spaCy 进行实体识别和关系抽取
    • 2.3 将抽取的实体和关系导入 Neo4j
    • 2.4 在 Neo4j Desktop 中查看数据
  • 3. Neo4j导出数据
    • 3.1 在 Neo4j 中准备数据
    • 3.2. 导出 Neo4j 数据
      • 3.2.1 导出实体(如运动员和地点)
      • 3.2.2 导出关系(如 BORN_IN)
  • 4. 转换为 OWL 格式
    • 4.1 使用 Python 编程库
      • a. **`owlready2`**
      • b. **`RDFLib`**
        • 环境准备
        • 案例代码
        • 代码解释
        • 注意事项
        • 选择合适的方法
    • 4.2 其他
  • 5. 在 Protégé 中加载 OWL 文件和处理
    • 4.1 打开 Protégé
    • 4.2 创建或打开本体
    • 4.3 导入 OWL 文件
    • 4.4 验证数据
    • 4.5 后续步骤
  • 5. 案例总结
  • 6. 不足与补充
  • 相关阅读

1. 环境准备

1.1 Neo4j Desktop 安装和配置

  • 安装 Neo4j Desktop:访问 Neo4j 官网 下载并安装 Neo4j Desktop。
  • 启动本地数据库:创建一个新的数据库,并确保 Bolt 协议(默认端口:7687)和 REST API(默认端口:7474)启用。
    前置博客:
    知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)

1.2 安装并启动 Protégé

  • 下载和安装 Protégé:访问 Protégé 官网 下载并安装最新版本。
  • 启动 Protégé:运行应用程序并创建或打开本体项目。
    前置博客:
    知识图谱入门——4:Protégé 5.6.4安装和主要功能介绍、常用插件(2024年10月2日):知识图谱构建的利器

1.3 配置 spaCy 环境(Jupyter Notebook)

使用以下步骤在 Python 环境中配置 spaCy。

1.3.1 安装 spaCy

运行以下命令创建虚拟环境并安装 spaCy 和中文模型(因为有库冲突,建议新建环境):

# 创建虚拟环境
python -m venv spacy_env# 激活虚拟环境
spacy_env\Scripts\activate  # Windows# 安装 spaCy
pip install spacy
python -m spacy download zh_core_web_sm  # 中文模型

在这里插入图片描述

1.3.2 安装 Jupyter 和 ipykernel

确保可以在 Jupyter Notebook 中使用 spaCy 虚拟环境:

pip install jupyter ipykernel
python -m ipykernel install --name spacy_env --display-name "spacy_env"

1.4 启动 Jupyter Notebook

在虚拟环境中运行 Jupyter Notebook:

jupyter notebook

在新建的笔记本中选择内核为 “spaCy Environment”

在这里插入图片描述

2. 案例实现步骤

2.1 数据示例

假设我们有如下文本数据,描述了一些运动员的信息:

姚明,出生于中国上海,前中国篮球运动员,曾效力于NBA休斯顿火箭队。
刘翔,出生于中国上海,前中国田径运动员,曾获得奥运会110米栏冠军。

2.2 使用 spaCy 进行实体识别和关系抽取

在 Jupyter Notebook 中,使用 spaCy 进行命名实体识别(NER):

import spacy# 加载中文模型
nlp = spacy.load("zh_core_web_sm")# 示例文本
texts = ["姚明,出生于中国上海,前中国篮球运动员,曾效力于NBA休斯顿火箭队。","刘翔,出生于中国上海,前中国田径运动员,曾获得奥运会110米栏冠军。"
]# 处理文本
for text in texts:doc = nlp(text)print(f"Processing text: {text}")for ent in doc.ents:print(f"Entity: {ent.text}, Label: {ent.label_}")

在这里插入图片描述

2.3 将抽取的实体和关系导入 Neo4j

我们使用 py2neo 将抽取的实体和关系导入到 Neo4j(使用前要启动!):

from py2neo import Graph, Node, Relationship# 连接到 Neo4j 本地数据库
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password(12345678)"))# 创建节点和关系
for text in texts:doc = nlp(text)entities = [ent.text for ent in doc.ents]if len(entities) >= 2:athlete = Node("Athlete", name=entities[0])location = Node("Location", name=entities[1])# 创建节点graph.merge(athlete, "Athlete", "name")graph.merge(location, "Location", "name")# 创建关系born_in = Relationship(athlete, "BORN_IN", location)graph.merge(born_in)# 打印插入信息print(f"Added {entities[0]} born in {entities[1]} to Neo4j")

在这里插入图片描述
在这里插入图片描述

2.4 在 Neo4j Desktop 中查看数据

使用 Neo4j 的 Cypher 查询语言检查插入的数据:

MATCH (a:Athlete)-[r:BORN_IN]->(l:Location)
RETURN a, r, l

都可以点击*和查询语言:
在这里插入图片描述

3. Neo4j导出数据

将 Neo4j 中的数据加载到 Protégé 进行本体管理,通常通过导出 Neo4j 的数据并转换为 OWL(Web Ontology Language)格式,再在 Protégé 中导入。以下是详细步骤:

3.1 在 Neo4j 中准备数据

确保 Neo4j 数据库中包含所有希望导入到 Protégé 的实体和关系。使用 Cypher 查询检查数据,例如:

MATCH (a:Athlete)-[r:BORN_IN]->(l:Location)
RETURN a, r, l

整体导出:
在这里插入图片描述
效果如:
在这里插入图片描述

3.2. 导出 Neo4j 数据

利用 Neo4j 提供的工具或 Cypher 查询将数据导出为 CSV 格式,步骤如下:

3.2.1 导出实体(如运动员和地点)

使用以下 Cypher 查询导出 AthleteLocation 节点为 CSV 文件(导出同上,不在截图):

// 导出运动员数据
MATCH (a:Athlete)
RETURN a.name AS Name
// 导出地点数据
MATCH (l:Location)
RETURN l.name AS Name

在 Neo4j 浏览器中,点击结果表格右上角的导出按钮,选择 “CSV” 格式。

3.2.2 导出关系(如 BORN_IN)

使用以下查询导出运动员与出生地之间的关系:

// 导出关系数据
MATCH (a:Athlete)-[r:BORN_IN]->(l:Location)
RETURN a.name AS Athlete, l.name AS Location

同样,将结果导出为 CSV 文件。

4. 转换为 OWL 格式

下面是几种常用的方法,将数据转换为 OWL 格式的综述,包括编程库、图形化工具和在线服务:

4.1 使用 Python 编程库

a. owlready2

  • 功能: 提供一个简单的 API 来创建和管理 OWL 本体。
  • 优点: 灵活、强大,适合需要编程的用户。
  • 示例代码:
    import pandas as pd
    from owlready2 import *# 创建 OWL 本体
    onto = get_ontology("http://example.com/ontology.owl")# 定义类和属性
    with onto:class Athlete(Thing): passclass Location(Thing): passclass BORN_IN(ObjectProperty):domain = [Athlete]range = [Location]# 读取 CSV 数据并转换
    data_df = pd.read_csv('data.csv')
    for _, row in data_df.iterrows():athlete_instance = Athlete(row['a'].split("{name: ")[1].rstrip("}").strip('"'))location_instance = Location(row['l'].split("{name: ")[1].rstrip("}").strip('"'))athlete_instance.BORN_IN.append(location_instance)# 保存为 OWL 文件
    onto.save("output.owl")
    

b. RDFLib

  • 功能: 一个用于处理 RDF 数据的 Python 库,支持多种数据格式的转换。
  • 优点: 灵活,可用于批量处理和自动化任务。
  • 操作示例:
    • 读取 CSV 文件并构建 RDF 图,然后使用 RDFLib 保存为 OWL 格式。
      以下是一个使用 RDFLib 的简单案例,演示如何使用 Python 创建一个 RDF 图,添加一些三元组,并将其导出为 OWL 格式。
环境准备

确保你已经安装了 RDFLib。如果还没有安装,可以使用 pip 安装:

pip install rdflib
案例代码

以下代码示例演示了如何创建一个简单的 RDF 图,添加一些数据,然后将其导出为 OWL 文件。

from rdflib import Graph, URIRef, Literal, RDF, RDFS# 创建一个 RDF 图
g = Graph()# 定义命名空间
EX = URIRef("http://example.com/")# 添加类
g.add((EX.Athlete, RDF.type, RDFS.Class))
g.add((EX.Location, RDF.type, RDFS.Class))# 添加属性
g.add((EX.BORN_IN, RDF.type, RDF.Property))
g.add((EX.BORN_IN, RDFS.domain, EX.Athlete))
g.add((EX.BORN_IN, RDFS.range, EX.Location))# 添加个体
g.add((EX.LiuXiang, RDF.type, EX.Athlete))
g.add((EX.LiuXiang, RDFS.label, Literal("刘翔")))
g.add((EX.YaoMing, RDF.type, EX.Athlete))
g.add((EX.YaoMing, RDFS.label, Literal("姚明")))g.add((EX.LiuXiang, EX.BORN_IN, EX.ChinaShanghai))
g.add((EX.ChinaShanghai, RDF.type, EX.Location))
g.add((EX.ChinaShanghai, RDFS.label, Literal("中国上海")))g.add((EX.YaoMing, EX.BORN_IN, EX.Beijing))
g.add((EX.Beijing, RDF.type, EX.Location))
g.add((EX.Beijing, RDFS.label, Literal("北京")))# 保存为 OWL 文件
g.serialize(destination="output.owl", format="xml")print("RDF 图已保存为 output.owl 文件。")
代码解释
  1. 创建图:首先,我们创建一个新的 RDF 图。
  2. 定义命名空间:使用 URIRef 定义一个基础的命名空间,方便后续引用。
  3. 添加类和属性:通过 g.add() 方法添加 AthleteLocation 类,以及 BORN_IN 属性。
  4. 添加个体:为每个运动员和地点创建个体,并定义其标签和类型。
  5. 导出为 OWL:最后,将构建好的 RDF 图导出为 OWL 格式的 XML 文件。
注意事项
  • 确保 RDFLib 已正确安装,并与 Python 版本兼容。
  • 如果需要自定义更多复杂的关系和属性,可以在此基础上扩展代码。
选择合适的方法
  • 编程用户: 使用 owlready2RDFLib,适合需要自定义处理逻辑的场景。
  • 非编程用户: 使用 Protégé 或在线工具,适合需要直观操作的用户。
  • 临时处理: 在线工具提供快速解决方案,但功能可能有限。

根据你的具体需求和技术背景,可以选择最适合的方法来完成数据到 OWL 格式的转换。

4.2 其他

  • Protégé插件:在 Protégé 中导入 CSV 数据通常需要使用插件,因为 Protégé 默认并不直接支持 CSV
    格式的导入。这里就不在介绍。
  • 使用在线工具:查找网站

5. 在 Protégé 中加载 OWL 文件和处理

4.1 打开 Protégé

启动 Protégé 应用程序。

4.2 创建或打开本体

  • 新项目:点击 “File” > “New Project” 创建新本体。
  • 现有项目:点击 “File” > “Open Project” 打开已有本体。
    在这里插入图片描述

4.3 导入 OWL 文件

  1. 在 Protégé 菜单中,选择 File > Import…
  2. 选择刚创建的 OWL 文件并点击 Next
  3. 根据需要选择“完全导入”或“部分导入”。
  4. 点击 Finish 完成导入。

4.4 验证数据

在 Protégé 中浏览导入的类、个体和关系,确保数据正确显示并可管理。

4.5 后续步骤

  • 在 Protégé 中进一步修改本体结构、添加注释、定义属性等。
  • 根据需求设计新关系和类,增强本体语义。

通过这些步骤,你可以将 Neo4j 中的数据成功加载到 Protégé 中进行本体管理。

5. 案例总结

通过以上步骤,我们成功将 spaCyNeo4jProtégé 结合起来,构建了一个从文本处理到知识图谱的完整工作流。这种方法不仅提高了知识图谱构建的效率,还能够通过 Protégé 进行更加灵活的本体管理。

6. 不足与补充

  • 数据质量:依赖于输入文本的质量,错误或模糊的信息可能导致不准确的实体识别。
  • 扩展性:在处理复杂关系时,可能需要定义更多的关系和属性。
  • 性能:在大规模数据集上运行可能会影响性能,需优化数据处理逻辑。
问题解决方案
实体识别错误提高模型训练数据的质量
关系定义不足增加更多的关系定义和处理逻辑
性能问题使用异步处理或批量操作

这种集成流程为从自然语言处理到知识图谱构建提供了高效的工具链,使得信息的存储和检索变得更加方便。随着项目的发展,你可以根据实际需求扩展这个流程,处理更多复杂的数据和关系。

相关阅读

  • 专栏:知识图谱:从0到 ∞
  • 知识图谱入门——1:基本概念、为什么要用?核心步骤、常用工具与技术、应用场景
  • 知识图谱入门——2:技术体系基本概念:知识表示与建模、知识抽取与挖掘、知识存储与融合、知识推理与检索
  • 知识图谱入门——3:工具分类与对比(知识建模工具:Protégé、 知识抽取工具:DeepDive、知识存储工具:Neo4j)
  • 知识图谱入门——6:Cypher 查询语言高级组合用法(查询链式操作、复杂路径匹配、条件逻辑、动态模式创建,以及通过事务控制和性能优化处理大规模数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/444135.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 Docker 部署前端项目:Vue 和 React 结合 Nginx 实现静态文件托管

使用 Docker 部署前端项目:Vue 和 React 结合 Nginx 实现静态文件托管 Web 开发中,将前端项目(例如 Vue 或 React 应用)打包后通过 Docker 容器和 Nginx 部署是非常常见的方式。它不仅简化了部署流程,还能确保在不同环…

4G路由网关R10在智能制造生产线的应用

在当今智能制造的时代,高效稳定的网络连接和数据传输至关重要。4G 路由网关 R10 以其卓越的性能,在智能制造生产线中发挥着重要作用。 4G 路由网关 R10 是一款功能强大的网络设备。它支持多种网络连接方式,包括 4G 网络、有线网络等&#xff…

MySQL连接:内连接

先看我的表结构 dept表 emp表 内连接分为两个连接方式 1.隐式内连接 2.显式内连接 1.隐式内连接 基本语法 select 字段列表 FROM 表1, 表2 WHERE 条件... ;例子:查询每一个员工的姓名,及关联的部门的名称(隐式内连接实现) …

【C++ STL算法】二分查找 lower_bound、upper_bound、equal_range、binary_search

文章目录 【 1. 首个不小于 lower_bound 】【 2. 首个大于 upper_bound 】【 3. 所有等于 equel_range 】【 4. 二分查找 binary_search 】 当 指定区域内的数据处于有序状态 时,如果想查找某个目标元素,更推荐使用二分查找的方法(相比顺序查…

电影选票选座系统|影院购票|电影院订票选座小程序|基于微信小程序的电影院购票系统设计与实现(源码+数据库+文档)

电影院订票选座小程序 目录 基于微信小程序的电影院购票系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户功能实现 2、管理员功能实现 (1)影院信息管理 (2)电影信息管理 (3)已完成…

Internet Download Manager6.42免费版下载神器新体验

🚀 开篇就燃!你的下载速度被“TA”承包了 #### 🌟 初识IDM 6.42,下载界的“超跑”驾到 各位追求效率的小伙伴们,今天小红要来揭秘一款让我彻底告别“龟速”下载的神器——Internet Download Manager (简称IDM) 6.42版&…

xtu oj 四位数

样例输入# 2 1990 1111样例输出# 5 0 分离整数与合并 AC代码 #include<stdio.h> //判断四个数码是否相等 int Judge(int n){int flag1;int gn%10,sn/10%10,bn/100%10,qn/1000;if(gs&&gb&&gq)flag0;return flag; } int main(){int T;scanf("%d…

dayu_widgets-简介

前言: 越来越多的人开始使用python来做GUI程序&#xff0c;市面上却很少有好的UI控件。即使有也是走的商业收费协议&#xff0c;不敢使用&#xff0c;一个不小心就收到法律传票。 一、原始开源项目: 偶然在GitHub上发现了这个博主的开源项目。https://github.com/phenom-films…

抽象类Abstart Class

抽象类其实就是一种不完全的设计图 必须用abstract修饰 模板方法&#xff1a;建议使用final修饰&#xff0c;不能被重写。

DGL库之HGTConv的使用

DGL库之HGTConv的使用 论文地址和异构图构建教程HGTConv语法格式HGTConv的使用 论文地址和异构图构建教程 论文地址&#xff1a;https://arxiv.org/pdf/2003.01332 异构图构建教程&#xff1a;异构图构建 异构图转同构图&#xff1a;异构图转同构图 HGTConv语法格式 dgl.nn.…

AI智能聊天问答系统源码+AI绘画系统+图文搭建部署教程,文生图图生图,TTS语音识别输入,AI智能体,文档分析

一、前言 人工智能的快速进步吸引了全球的瞩目&#xff0c;各式AI应用如绘图、语言模型和视频处理等已在多个领域获得应用。这些技术不仅加速了科技的创新&#xff0c;也在艺术创作、内容生产和商业实践等方面显示了其巨大潜力。例如&#xff0c;AI语言模型极大提升了内容自动…

【动态规划-最长公共子序列(LCS)】【hard】【科大讯飞笔试最后一题】力扣115. 不同的子序列

给你两个字符串 s 和 t &#xff0c;统计并返回在 s 的 子序列 中 t 出现的个数&#xff0c;结果需要对 10^9 7 取模。 示例 1&#xff1a; 输入&#xff1a;s “rabbbit”, t “rabbit” 输出&#xff1a;3 解释&#xff1a; 如下所示, 有 3 种可以从 s 中得到 “rabbit”…

ABAP 表转JSON格式

FUNCTION ZRFC_FI_SEND_PAYPLAN2BPM. *"---------------------------------------------------------------------- *"*"本地接口&#xff1a; *" IMPORTING *" VALUE(INPUT) TYPE ZSRFC_FI_SEND_PAYBPM_IN *" EXPORTING *" VAL…

vue3数字滚动插件vue3-count-to

1.安装 npm i vue3-count-to 2.引入 import { CountTo } from vue3-count-to3.使用 <countTo :startVal"0" :endVal"57.63" :decimals"2" :duration"3000"></countTo> 配置项:

yolov5-7.0模型DNN加载函数及参数详解(重要)

yolov5-7.0模型DNN加载函数及参数详解&#xff08;重要&#xff09; 引言yolov5&#xff08;v7.0&#xff09;1&#xff0c;yolov5.h(加载对应模型里面的相关参数要更改)2&#xff0c;main主程序&#xff08;1&#xff09;加载网络&#xff08;2&#xff09;检测推理&#xff0…

AVL树如何维持平衡

1.AVL树的特性 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索树将退化为单支树&#xff0c;查 找元素相当于在顺序表中搜索元素&#xff0c;效率低下。因此&#xff0c;两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种…

【万字长文】Word2Vec计算详解(一)CBOW模型

【万字长文】Word2Vec计算详解&#xff08;一&#xff09;CBOW模型 写在前面 本文用于记录本人学习NLP过程中&#xff0c;学习Word2Vec部分时的详细过程&#xff0c;本文与本人写的其他文章一样&#xff0c;旨在给出Word2Vec模型中的详细计算过程&#xff0c;包括每个模块的计…

【redis-06】redis的stream流实现消息中间件

redis系列整体栏目 内容链接地址【一】redis基本数据类型和使用场景https://zhenghuisheng.blog.csdn.net/article/details/142406325【二】redis的持久化机制和原理https://zhenghuisheng.blog.csdn.net/article/details/142441756【三】redis缓存穿透、缓存击穿、缓存雪崩htt…

Auto-Animate:是一款零配置、即插即用的动画工具,可以为您的 Web 应用添加流畅的过渡效果

嗨&#xff0c;大家好&#xff0c;我是小华同学&#xff0c;关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 用户体验成为了检验产品成功与否的关键因素。而动画效果&#xff0c;作为提升用户体验的重要手段&#xff0c;在网页和应用开发中扮演着举足轻重的角色…

同望OA tooneAssistantAttachement.jsp 任意文件读取漏洞复现

0x01 产品简介 同望OA,即同望科技打造的智企云协同管理系统,是一款高效的企业协同移动办公系统。秉承“互联网++企业管理”理念,定位于以移动互联办公为基础的企业协同管理软件平台。它旨在通过内置常用标准模块与专项管理模块应用,安全快速地打通管理与业务通道,实现管理…