【进阶OpenCV】 (11)--DNN板块--实现风格迁移

文章目录

  • DNN板块
    • 一、DNN特点
    • 二、DNN函数流程
    • 三、实现风格迁移
      • 1. 图像预处理
      • 2. 加载星空模型
      • 3. 输出处理
  • 总结

DNN板块

DNN模块是 OpenCV 中专门用来实现 DNN(Deep Neural Networks,深度神经网络) 模块的相关功能,其作用是载入别的深度学习框架(如 TensorFlow、Caffe、Torch 等)中已经训练好的模型,然后用该模型完成预测等工作。

DNN进行风格迁移是一项基于深度学习技术的图像处理方法,它允许将一张图片(风格图)中的风格、纹理迁移到另一张图片(内容图)上,同时保留内容图原有的主体结构。

一、DNN特点

  • 轻量: OpenCV 的深度学习模块只实现了模型推理功能,不涉及模型训练,这使得相关程序非常精简,加速了安装和编译过程。
  • 外部依赖性低:重新实现一遍深度学习框架使得 DNN 模块对外部依赖性极低,极大地方便了深度学习应用的部署。
  • 方便:在原有 OpenCV 开发程序的基础上,通过 DNN 模块可以非常方便地加入对神经网络推理的支持。
  • 集成:若网络模型来自多个框架,如一个来自 TensorFlow,另外一个来自 Caffe,则 DNN 模块可以方便地对网络进行整合。
  • 通用性:DNN 模块提供了统一的接口来操作网络模型,内部做的优化和加速适用于所有网络模型格式,支持多种设备和操作系统。

二、DNN函数流程

在这里插入图片描述

  • 图像预处理

将需要处理的图像转换成可以传入人工神经网络的数据形式

DNN 模块中的函数 blobFromlmage 完成图像预处理,从原始图像构建一个符合人工神经网络输入格式的四维块。它通过调整图像尺寸和裁图像、减均值、按比例因子缩放、交换 B 通道和R通道等可选操作完成对图像的预处理,得到符合人工神经网络输入的目标值。

三、实现风格迁移

基本原理:风格迁移的实现通常基于卷积神经网络(CNNs),尤其是预训练的卷积神经网络(如VGG网络)。使用这些网络,可以提取内容图像的内容特征和风格图像的风格特征。这通常涉及到在网络的不同层次上计算特征表示。然后,定义一个损失函数,该函数包括内容损失和风格损失两个部分。内容损失用于确保生成图像与内容图像相似,而风格损失则用于确保生成图像的风格与风格图像匹配。通过最小化损失函数,使用梯度下降或其他优化方法来调整生成图像的像素值,使损失最小化,从而导致生成图像逐渐融合内容和风格。

接下来我们尝试将以下图片转化为星空风格

在这里插入图片描述

1. 图像预处理

对于图像的预处理,我们需要通过cv2.dnn.blobFromImage()函数来将图像转换成可以传入人工神经网络的数据形式:

blob = cv2.dnn.blobFromImage(image, scalefactor, size, mean, swapRB=True, crop=False)

参数

-- image (必需):要转换的图像,通常是一个通过 OpenCV 读取的彩色或灰度图像。
-- scalefactor (必需):图像缩放因子。这个值用于调整图像的像素值范围,通常设置为 1.0(不缩放)。
-- size (必需):输出 blob 的空间尺寸(宽度,高度)。这个值应该与你要使用的预训练模型的输入尺寸相匹配。
-- mean (可选):从每个通道中减去的均值。这通常用于数据标准化,以便模型能够更好地处理输入数据。对于预训练的模型,这个值通常是固定	的,并且可以在模型的文档中找到。
-- swapRB (可选):是否交换红色和蓝色通道。
-- crop (可选):是否在预处理过程中裁剪图像。

预处理

import cv2
"""-----图片预处理-----"""
# 读取输入图像
image = cv2.imread('tu.jpg')
# 显示输入图像
cv2.imshow('yuan_tu',image)
cv2.waitKey(0)(h,w) = image.shape[:2] # 获取图像尺寸
blob = cv2.dnn.blobFromImage(image,1,(w,h),(0,0,0),swapRB = True,crop = False)

2. 加载星空模型

通过cv2.dnn.readNet()函数加载模型,通过**net.setInput()设置输入,然后通过net.forward()**进行前向传播得到输出:

net = cv2.dnn.readNet(r'model\starry_night.t7') # 得到一个pytorch训练后的星空模型# 设置神经网络的输入
net.setInput(blob)
# 对输入图片进行前向传播,得到输出结果
out = net.forward()

3. 输出处理

将输出结果转换为合适的格式,out是四维的:B*C*H*W(B:batch图像数量(通常为1);C:channels通道数;H:height高度;W:width宽度)。

所以我们需要重塑形状(忽略第一维),4维变3维,调整输出out的形状,模型推理输出out是四维BCHW形式的,调整为三维CHW形式。

# 重塑形状
out_new = out.reshape(out.shape[1],out.shape[2],out.shape[3])
# 对输入的数组(或图像)进行归一化处理,使其数值范围在指定的范围内
cv2.normalize(out_new,out_new,norm_type=cv2.NORM_MINMAX)
# 转置输出结果的维度,将通道维度移动到了最后,因为OpenCV期望图像以HWC格式显示。
result = out_new.transpose(1,2,0)
# 显示转换后的图像
cv2.imshow('Stylized Image',result)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

总结

本篇介绍了,如何通过DNN板块进行风格迁移。

注意!!!:进行风格迁移时,需要将传入的图片转换成可以传入人工神经网络的数据形式。且输出时进行转置,将通道维度移动到了最后,因为OpenCV期望图像以HWC格式显示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/446404.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【微信小程序_11_全局配置】

摘要:本文介绍了微信小程序全局配置文件 app.json 中的常用配置项,重点阐述了 window 节点的各项配置,包括导航栏标题文字、背景色、标题颜色,窗口背景色、下拉刷新样式以及上拉触底距离等。通过这些配置可实现小程序窗口外观的个性化设置,提升用户体验。 微信小程序_11_全…

如何成为 Rust 核心贡献者?Rust 开发的核​​心是什么?Rust 重要技术专家揭秘

10 月 17 - 18日,由 GOSIM 开源创新汇主办、CSDN 承办的 GOSIM CHINA 2024 将在北京盛大启幕。作为 GOSIM 开源年度大会的第三届盛会,本次活动邀请了 60 多位国际开源专家,汇聚了来自全球百余家顶尖科技企业、知名高校及开源社区的技术大咖、…

回溯法与迭代法详解:如何从手机数字键盘生成字母组合

在这篇文章中,我们将详细介绍如何基于手机数字键盘的映射,给定一个仅包含数字 2-9 的字符串,输出它能够表示的所有字母组合。这是一个经典的回溯算法问题,适合初学者理解和掌握。 问题描述 给定一个数字字符串,比如 …

python基础路径的迁移

本人未安装anaconda或pycharm等,仅安装了某个python环境,因此以下方法仅针对基础python环境的迁移,不确保其他软件或插件正常运行 第一步将原python路径的整个文件夹剪切到新的路径下 第二步修改系统环境变量,将原来的python路径…

php 生成随机数

记录:随机数抽奖 要求:每次生成3个 1 - 10 之间可重复(或不可重复)的随机数,10次为一轮,每轮要求数字5出现6次、数字4出现3次、…。 提炼需求: 1,可设置最小数、最大数、每次抽奖生…

鸿蒙--商品列表

这里主要利用的是 List 组件 相关概念 Scroll:可滚动的容器组件,当子组件的布局尺寸超过父组件的视口时,内容可以滚动。List:列表包

AI+若依框架day02

项目实战 项目介绍 帝可得是什么 角色和功能 页面原型 库表设计 初始AI AIGC 提示工程 Prompt的组成 Prompt练习 项目搭建 点位管理 需求说明 库表设计

浏览器中使用模型

LLM 参数越来越小,使模型跑在端侧成为可能,为什么要模型跑在端侧呢,首先可以节省服务器的算力,现在 GPU 的租用价格还是比较的高的,例如租用一个 A10 的卡1 年都要 3 万多。如果将一部分算力转移到端侧通过小模型进行计…

【LeetCode热题100】分治-快排

本篇博客记录分治快排的4道题目&#xff1a;颜色分类、排序数组、数组中的第K个最大元素、数组中最小的N个元素&#xff08;库存管理&#xff09;。 class Solution { public:void sortColors(vector<int>& nums) {int n nums.size();int left -1,right n;for(int…

React速成

useRef获取DOM 组件通讯 子传父 function Son({ onGetMsg }){const sonMsg this is son msgreturn (<div>{/* 在子组件中执行父组件传递过来的函数 */}<button onClick{()>onGetMsg(sonMsg)}>send</button></div>) }function App(){const getMsg…

Python基础常见面试题总结

文章目录 1.深拷贝与浅拷贝2.迭代器3.生成器4.装饰器5.进程、线程、协程6.高阶函数7.魔法方法8.python垃圾回收机制 1.深拷贝与浅拷贝 浅拷贝是对地址的拷贝&#xff0c;只拷贝第一层&#xff0c;第一层改变的时候不会改变&#xff0c;内层改变才会改变。深拷贝是对值的拷贝&a…

智能驾驶|迈向智能出行未来,AI如何应用在自动驾驶?

自动驾驶通过人工智能&#xff08;AI&#xff09;、机器学习、传感器融合和实时数据处理&#xff0c;使车辆能够在无需人类干预的情况下自主驾驶。随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;与智能汽车的结合正在成为现代交通运输领域的热潮。无人驾驶…

selenium-Alert类用于操作提示框/确认弹框(4)

之前文章我们提到&#xff0c;在webdriver.WebDriver类有一个switch_to方法&#xff0c;通过switch_to.alert()可以返回Alert对象&#xff0c;而Alert对象主要用于网页中弹出的提示框/确认框/文本输入框的确认或者取消等动作。 Alert介绍 当在页面定位到提示框/确认框/文本录入…

Flythings学习(二)控件相关

文章目录 1 前言2 通用属性2.1 控件ID值2.2 控件位置2.3 背景色2.4 背景图2.5 显示与隐藏2.6 控件状态2.7 蜂鸣器控制 3 文本类TextView4 按键类 Button4.1 系统按键4.2 处理按钮长按事件4.3 处理按键触摸事件 5 复选框CheckBox6 单选组 RadioGroup7 进度条&#xff0c;滑块7.1…

Ubuntu卸载Mysql【ubuntu 24.04/mysql 8.0.39】

一、准备工作 查看ubuntu版本号 查看mysql版本号(如果没有安装mysql,这一步省略) 二、Ubuntu上卸载mysql(如果没有安装mysql这一步省略) 在Ubuntu上卸载MySQL可以通过以下步骤进行&#xff0c;确保完全移除MySQL相关的包和数据&#xff1a; 1. 停止MySQL服务 在卸载之前…

verilog端口使用注意事项

下图存在组合逻辑反馈环&#xff0c;即组合逻辑的输出反馈到输入(赋值的左右2边存在相同的信号)&#xff0c;此种情况会造成系统不稳定。比如在data_in20的情况下&#xff0c;在data_out0 时候&#xff0c;输出的数据会反馈到输入&#xff0c;输入再输出&#xff0c;从而造成不…

java项目之基于vue的工厂车间管理系统的设计源码(springboot+mysql+vue)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的基于vue的工厂车间管理系统的设计。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 基于vu…

QT开发--多线程

第十四章 多线程 QThread 是 Qt 中实现多线程编程的核心类&#xff0c;提供跨平台线程管理。 使用 QThread 有两种方法&#xff1a; 1、 继承 QThread&#xff1a;重写 run() 方法&#xff0c;实现线程的具体操作。Qt4.8 之前较常用。 2、 使用 QObject 和 moveToThread()&…

树莓派应用--AI项目实战篇来啦-17.YOLOv8目标检测-安全帽检测

1. YOLOv8介绍 YOLOv8是Ultralytics公司2023年推出的Yolo系列目标检测算法&#xff0c;可以用于图像分类、物体检测和实例分割等任务。YOLOv8作为YOLO系列算法的最新成员&#xff0c;在损失函数、Anchor机制、样本分配策略等方面进行了全面优化和创新。这些改进不仅提高了模型的…

深入理解Transformer的笔记记录(精简版本)NNLM → Word2Vec

文章的整体介绍顺序为: NNLM → Word2Vec → Seq2Seq → Seq2Seq with Attention → Transformer → Elmo → GPT → BERT 自然语言处理相关任务中要将自然语言交给机器学习中的算法来处理,通常需要将语言数学化,因为计算机机器只认数学符号。向量是人把自然界的东西抽象出…