一、软件环境
软件 | 版本号 | 备注 |
---|---|---|
Spring boot | 2.7.2 | 3.x版本建议使用ElasticSearch8.x |
ElasticSearch | 7.17.4 | ElasticSearch 7.x 可使用JDK 8 ElasticSearch 8.x 要求使用JDK 11+ |
二、安装ElasticSearch
下载地址:https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.17.4-linux-x86_64.tar.gz
上传压缩包至/usr/local/
cd /usr/local/
//解压
tar -xvf elasticsearch-7.17.4-linux-x86_64.tar.gz
修改配置文件/usr/local/elasticsearch-7.17.4/config/elasticsearch.yml
注意 :后面需要跟一个空格
//数据存储路径,文件不存在则先创建
path.data: /usr/local/elasticsearch-7.17.4/data
//日志存储路径
path.logs: /usr/local/elasticsearch-7.17.4/logs
//在底部增加以下内容,以便支持设置密码
http.cors.enabled: true
http.cors.allow-origin: "*"
http.cors.allow-headers: Authorization
xpack.security.enabled: true
xpack.security.transport.ssl.enabled: true
修改内存参数配置/usr/local/elasticsearch-7.17.4/config/jvm.options,可根据实际需求配置。
-Xms512m
-Xmx512m
JDK版本兼容,该版本默认要求JDK11,系统配置了JDK8,启动时会冲突,故进行以下调整
编辑/usr/local/elasticsearch-7.17.4/bin/elasticsearch-env,注释红框部分
ElasticSearch不能以root启动,为指定用户配置权限
//ElasticSearch不能以root启动,为指定用户配置权限
chown -R 用户名:用户名 /usr/local/elasticsearch-7.17.4
//启动ElasticSearch,需切换为非root用户
/usr/local/elasticsearch-7.17.4/bin/elasticsearch -d
//配置密码,需先启动一次ElasticSearch
/usr/local/elasticsearch-7.17.4/bin/elasticsearch-setup-passwords interactive
三、安装Kibana
下载地址:https://artifacts.elastic.co/downloads/kibana/kibana-7.17.4-linux-x86_64.tar.gz
上传压缩包至/usr/local/
cd /usr/local/
//解压
tar -zxvf kibana-7.17.4-linux-x86_64.tar.gz
编辑配置文件/usr/local/kibana-7.17.4-linux-x86_64/config/kibana.yml
//端口号
server.port: 5601//服务器绑定地址,允许所有网络接口访问
server.host: "0.0.0.0"//elasticsearch账户配置
elasticsearch.username: "kibana_system"
elasticsearch.password: "密码"//中文
i18n.locale: "zh-CN"
kibana和ElasticSearch一样,不能以root启动,为指定用户配置权限
//kibana不能以root启动,为指定用户配置权限
chown -R 用户名:用户名 /usr/local/kibana-7.17.4-linux-x86_64//前台启动
/usr/local/kibana-7.17.4-linux-x86_64/bin/kibana
//后台启动
nohup /usr/local/kibana-7.17.4-linux-x86_64/bin/kibana &
四、IK中文分词器
下载地址(根据对应的ElasticSearch版本号进行下载):
https://github.com/infinilabs/analysis-ik/releases
在ElasticSearch安装路径的plugins文件夹里,创建ik文件夹,如/usr/local/elasticsearch-7.17.4/plugins/ik,解压文件放到该路径下。
重启ElasticSearch即可。
五、Spring boot整合ElasticSearch
在Es7.15版本之后,es官方将它的高级客户端RestHighLevelClient标记为弃用状态。同时推出了全新的java API客户端Elasticsearch Java API Client,该客户端也将在Elasticsearch8.0及以后版本中成为官方推荐使用的客户端。
本文直接使用Elasticsearch Java API Client,后续方便升级8.x
pom.xml中增加:
<dependency><groupId>co.elastic.clients</groupId><artifactId>elasticsearch-java</artifactId><version>7.17.24</version>
</dependency>
配置文件:
spring.elasticsearch.uris=http://localhost:9200
spring.elasticsearch.username=elastic
spring.elasticsearch.password=*******
配置类ElasticsearchConfig:
@Configuration
public class ElasticsearchConfig {@Value("${spring.elasticsearch.uris}")private String uris;@Value("${spring.elasticsearch.username}")private String username;@Value("${spring.elasticsearch.password}")private String password;@Beanpublic ElasticsearchClient elasticsearchClient() {BasicCredentialsProvider credsProv = new BasicCredentialsProvider();credsProv.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(username, password));RestClient restClient = RestClient.builder(HttpHost.create(uris)).setHttpClientConfigCallback(hc -> hc.setDefaultCredentialsProvider(credsProv)).build();#多节点可参考/*RestClient restClient = RestClient.builder(new HttpHost("192.168.1.10", 9200),new HttpHost("192.168.1.11", 9200),new HttpHost("192.168.1.12", 9200)).build();*/ElasticsearchTransport transport = new RestClientTransport(restClient, new JacksonJsonpMapper());return new ElasticsearchClient(transport);}
}
在service类中自动装配ElasticsearchClient,后续直接使用
@Autowired
private ElasticsearchClient esClient;
六、索引相关操作
1.索引是否存在
http请求
GET /索引名称
JAVA API
BooleanResponse existsResponse = esClient.indices().exists(builder -> builder.index("索引名称"));
if (existsResponse.value()) {//存在
}else{//不存在
}
2.创建索引
http请求
PUT /索引名称
{//指定默认分词器为ik_max_word"settings" : {"index" : {"analysis.analyzer.default.type": "ik_max_word"}},"mappings": {"properties": {"字段1": {"type": "keyword" //keyword不进行分词},"字段2": {"type": "text" //text进行分词},"字段3": {"type": "date","format": "yyyy-MM-dd HH:mm:ss"}}}
}
JAVA API
//方式一
//定义映射
TypeMapping typeMapping = new TypeMapping.Builder().properties("integer字段", p -> p.integer(i -> i)).properties("keyword字段",p->p.keyword(k -> k)).properties("text字段", p -> p.text(t -> t)).properties("日期字段", p -> p.date(d -> d.format("yyyy-MM-dd"))).properties("日期时间字段", p -> p.date(d -> d.format("yyyy-MM-dd HH:mm:ss"))).build();
esClient.indices().create(new CreateIndexRequest.Builder().index("索引名称").mappings(typeMapping).build());//方式二、根据json内容创建索引
String mappings = """{"mappings" : {"properties" : {"integer字段" : {"type" : "integer"},"keyword字段" : {"type" : "keyword"},"text字段" : {"type" : "text"},"日期字段" : {"type" : "date","index" : false,"format" : "yyyy-MM-dd"},"日期时间字段" : {"type" : "date","index" : false,"format" : "yyyy-MM-dd HH:mm:ss"}}}}""";
esClient.indices().create(new CreateIndexRequest.Builder().index("索引名称").withJson(new StringReader(mappings)).build());
3.查询索引映射信息
http请求
GET /索引名称/_mapping
JAVA API
GetMappingResponse response = esClient.indices().getMapping(builder -> builder.index("索引名称"));
IndexMappingRecord indexMappingRecord = response.get("索引名称");
TypeMapping typeMapping = indexMappingRecord.mappings();
Map<String, Property> properties=typeMapping.properties();
List<IndexMapping> mappings=new ArrayList<>();
for(String key:properties.keySet()){IndexMapping mapping_item=new IndexMapping();//字段名称mapping_item.setField_name(key);String json_str=String.valueOf(properties.get(key)._get());json_str=json_str.substring(json_str.indexOf("Property: ")+9);JSONObject property_json= JSONObject.parseObject(json_str);//字段类型mapping_item.setField_type(property_json.getString("type"));//自定义格式if(property_json.containsKey("format")){mapping_item.setField_format(property_json.getString("format"));}mappings.add(mapping_item);
}
4.向索引添加映射字段
http请求
PUT /索引名称/_mapping
{"properties": {"新增字段": {"type": "keyword"}}
}
JAVA API
//JSONObject mappings 为要增加的映射内容,参考http请求,这里省略细节
PutMappingResponse response=esClient.indices().putMapping(new PutMappingRequest.Builder().index("索引名称").withJson(new StringReader(mappings.toString())).build());
// 响应状态
Boolean acknowledged = response.acknowledged();
5.删除索引
http请求
DELETE /索引名称
JAVA API
DeleteIndexResponse response = esClient.indices().delete(builder -> builder.index("索引名称");
// 响应状态
Boolean acknowledged = response.acknowledged();
七、文档相关操作
1.添加文档
http请求
POST /索引名称/_doc/文档id
{"字段1": "内容","字段2": "内容"
}
JAVA API
// 插入文档到索引
//JSONObject json为文档内容
IndexRequest<Object> request = new IndexRequest.Builder<>().index("索引名称").id(”文档id“).document(json).build();
IndexResponse response = esClient.index(request);
2.编辑文档
http请求
PUT /索引名称/_doc/文档id
{"要修改的字段1":"要修改的内容","要修改的字段2":"要修改的内容"
}
JAVA API
//要修改的内容用Map组装
Map<String,Object> updateMap=new HashMap<>();
UpdateRequest<Object, Object> updateRequest = new UpdateRequest.Builder<>().index("索引名称").id(”文档id“).doc(updateMap).build();UpdateResponse<Object> updateResponse = esClient.update(updateRequest, Object.class);
3.根据id查询文档
http请求
GET /索引名称/_doc/文档id
JAVA API
GetRequest getRequest = new GetRequest.Builder().index("索引名称").id(”文档id“).build();
GetResponse<Object> response = esClient.get(getRequest, Object.class);
if (response.found()) {return response.source();
} else {throw new MyException(ResultEnum.DATA_IS_EXIST.getCode(),"数据不存在");
}
4.删除文档
http请求
DELETE /索引名称/_doc/文档id
JAVA API
//支持批量删除,String[] id_arr为要删除的文档id数组
List<BulkOperation> bulkOperations = new ArrayList<>();
for(int i=0;i<id_arr.length;i++){String del_id=id_arr[i];bulkOperations.add(new BulkOperation.Builder().delete(d -> d.id(del_id).index("索引名称")).build());
}
BulkResponse bulkResponse = esClient.bulk(e -> e.index("索引名称").operations(bulkOperations));
5.筛选文档
http请求
GET blog/_search
{"query": {"bool" : {//必须满足的条件"must" : [//精确匹配{"term" : { "字段名称" : "自动内容" }},//模糊查询{"query_string": {"default_field": "字段名称","query": "*模糊匹配内容*"}}],//排除的条件"must_not" : [//精确匹配{"term" : { "字段名称" : "自动内容" }},//模糊查询{"query_string": {"default_field": "字段名称","query": "*模糊匹配内容*"}}]}},//排序规则"sort": [{//根据评分排序"_score": {"order": "desc"}},{"字段名称": {"order": "desc"}}],//从第几条开始获取,从0开始"from": 0,//获取多少条"size": 10
}
JAVA API
//queryJson是查询条件的json,参考http方式
SearchRequest searchRequest = new SearchRequest.Builder().index("索引名称").withJson(new StringReader(queryJson.toString())).build();
SearchResponse<Object> response = esClient.search(searchRequest,Object.class);
List<Hit<Object>> hits = response.hits().hits();
//不需要输出文档id的话可以不要
List<Map<String,Object>> data_list = hits.stream().map(p->{Map<String,Object> map=new HashMap<>();map.put("docoment_id",p.id());map.putAll((Map<String, Object>)p.source());return map;}).collect(Collectors.toList());
//data_list是数据list,
//符合条件的数据总数为(int)response.hits().total().value()
八、结合ingest attachment实现文档解析
1.安装ingest attachment插件
下载地址(版本号可根据对应的ElasticSearch版本号进行替换):
https://artifacts.elastic.co/downloads/elasticsearch-plugins/ingest-attachment/ingest-attachment-7.17.4.zip
安装方法:
切换至ElasticSearch根目录,执行
#linux
./bin/elasticsearch-plugin install file:///path/to/ingest-attachment-7.17.4.zip
#windows
./bin/elasticsearch-plugin install file:///C:/path/to/ingest-attachment-7.17.4.zip
重启ElasticSearch,定义文本抽取管道
PUT /_ingest/pipeline/attachment
{"description": "Extract attachment information","processors": [{"attachment": {"field": "content","ignore_missing": true}},{"remove": {"field": "content"}}]
}
在attachment
中指定要过滤的字段为content
,所以写入Elasticsearch
时需要将文档内容放在content
字段,传入内容需为文档的base64编码。支持txt、word、Excel、PPT、PDF等文件格式。
2.文件转base64编码
// 文件路径
String filePath = "E:/xxx/xxx.pdf"; // 请替换为你的文件路径
// 读取文件字节
byte[] fileBytes = Files.readAllBytes(Paths.get(filePath)); // 读取文件内容
String base64_str = Base64.getEncoder().encodeToString(fileBytes); // 编码为Base64字符串
3.实现文档解析
/*** 模拟管道处理,仅模拟,不会真正插入文档*/
Map<String, Object> source = new HashMap<>();
source.put("content", "文档的base64编码");
SimulateResponse response = client.ingest().simulate(builder -> builder.id("my-pipeline").docs(documentBuilder -> documentBuilder.index("索引名称").id(”文档id“).source(JsonData.of(source))));
log.info("response={}", response);
4.在文档索引的过程中使用
Map<String, Object> source = new HashMap<>();
source.put("content", "文档的base64编码");
IndexRequest<Object> request = new IndexRequest.Builder<>().index("索引名称").id(”文档id“).document(JsonData.of(source)).pipeline("attachment").build();IndexResponse response = esClient.index(request);logger.info(response.toString());