【Python时序数据系列】基于LSTM模型实现时序数据二分类(案例+源码)

这是我的第366篇原创文章。

一、引言

前面我介绍了单变量时序预测和多变量时序预测,都是回归任务。

相关链接:

时序预测系列文章

本文将介绍时序分类任务-基于LSTM模型进行时序数据二分类。

二、实现过程

2.1 准备数据

df1 = pd.read_table("train-small.txt",sep=',',header=0)
df1 = df1.iloc[:10000,:]
# 将Time (UTC)列设置为索引
df1.set_index('Time (UTC)', inplace=True)

df1:

图片

2.2 归一化

min_max_scaler = preprocessing.MinMaxScaler()
df0 = min_max_scaler.fit_transform(df1)
df1 = pd.DataFrame(df0, columns=df1.columns)

2.3 构造标签列

计算close的变化,构造label:

record=(df1['Close'][1:].values-df1['Close'][0:-1].values)>0
classification=[0]
for i in record:if(i==True):classification.append(1)else:classification.append(0)df1['label']=classification
df1.insert(0, 'label', df1.pop('label'))
fea_num = len(df1.columns)
print(df1)

df1:

图片

2.4 数据划分

8比2划分数据集:

df = df1
test_split = round(len(df)*0.20)
print(test_split)
df_for_training=df[:-test_split]
df_for_testing=df[-test_split:]
df_for_training=df_for_training.values
df_for_testing=df_for_testing.values

2.5 数据转换

设置滑动窗口为2:

window_size = 2
trainX,trainY=createXY(df_for_training,window_size)
testX,testY=createXY(df_for_testing,window_size)# 将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数)
trainX = np.reshape(trainX, (trainX.shape[0], window_size, fea_num))
testX = np.reshape(testX, (testX.shape[0], window_size, fea_num))print("trainX Shape-- ",trainX.shape)
print("trainY Shape-- ",trainY.shape)
print("testX Shape-- ",testX.shape)
print("testY Shape-- ",testY.shape)

数据形状:

图片

2.6 模型训练

建立LSTM模型,进行训练:

model = Sequential()
model.add(LSTM(64, input_shape=(window_size, fea_num), return_sequences=False))
model.add(Dropout(0.01))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
history = model.fit(trainX, trainY, epochs = 20, batch_size = 200,validation_data=(testX, testY))

迭代loss曲线:

图片

迭代accuracy曲线:

图片

2.7 模型评估

y_test_predict=model.predict(testX)
y_test_predict=y_test_predict[:,0]
print(y_test_predict)
print(y_test_predict>0.5)
y_test_predict=[int(i) for i in y_test_predict>0.5]
y_test_predict=np.array(y_test_predict)print("精确度等指标:")
print(metrics.classification_report(testY,y_test_predict))

classification_report:

图片

混淆矩阵:

图片

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/447761.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python yolov8半自动标注

首先标注一部分图片,进行训练,生成模型,标注文件为xml方便后面统一做处理。 1、标注数据(文件为xml, 转为txt用于训练,保留xml标签文件) 2、模型训练(训练配置、训练代码、) 3、使用…

ShardingJDBC分库分表实战

目录 一、第一个分库分表的案例 1、快速搭建基础JDBC应用 2、引入ShardingJDBC快速实现分库分表 二、理解分库分表的核心概念 1、ShardingSphere分库分表的核心概念 2、垂直分片和水平分片 三、ShardingJDBC常见数据分片策略实战 1、INLINE简单分片 2、STANDARD标准分片…

ubuntu下实时查看CPU,内存(Mem)和GPU的利用率

一、实时查看CPU和内存(Mem)利用率 htop官网:htop - an interactive process viewer sudo apt-get install htop htop ①. 顶部状态栏(System Metrics Overview) 这个区域显示系统的全局资源使用情况,包括…

深入解析 Harris 角点检测算法:从孔径问题到响应函数的完整推导

在图像处理中,角点是非常重要的特征。为了快速、准确地检测角点,Harris 提出了 Harris 角点检测算法,它基于局部窗口内图像梯度的变化来判断角点。本文将从最基础的孔径问题(Aperture Problem)入手,通过泰勒…

MeterSphere接口自动化平台调试

1。后置脚本节目 //导入json包 import org.json.*; import com.decode.DecodeMain; String responseprev.getResponseDataAsString(); String result DecodeMain.DecodeUtil(response); log.info(“获取批次账单id result:”result); //转换为Object对象类型 JSONObject data_…

机器学习:知识蒸馏(Knowledge Distillation,KD)

知识蒸馏(Knowledge Distillation,KD)作为深度学习领域中的一种模型压缩技术,主要用于将大规模、复杂的神经网络模型(即教师模型)压缩为较小的、轻量化的模型(即学生模型)。在实际应…

UE5 C++: 插件编写06 | 移动文件时自动Fix up redirectors

目录 前言: 本文内容: WHY WHAT HOW 详细步骤 代码解析 1. Build.cs file中 2. QuickAssetAction.cpp中 IMPORTANT NOTES 中文解释: 使用 AssetToolsModule 来修复重定向器 使用 AssetRegistryModule 来过滤所有重定向器 使用 FMo…

利士策分享,美国“假旗”行动,是否成为了网络空间的阴霾?

利士策分享,美国“假旗”行动,是否成为了网络空间的阴霾? 在当今这个信息化时代,网络空间已经成为国家间竞争与合作的重要领域。然而,美国却频繁采取一种名为“假旗行动”的卑劣手段,污染全球网络空间,给世…

Java 二分查找算法详解及通用实现模板案例示范

1. 引言 二分查找(Binary Search)是一种常见的搜索算法,专门用于在有序数组或列表中查找元素的位置。它通过每次将搜索空间缩小一半,从而极大地提高了查找效率。相比于线性查找算法,二分查找的时间复杂度为 O(log n)&…

Arthas常用的命令(三)--monitor、jad 、stack

monitor:监控方法的执行情况 监控指定类中方法的执行情况 用来监视一个时间段中指定方法的执行次数,成功次数,失败次数,耗时等这些信息 参数说明 方法拥有一个命名参数 [c:],意思是统计周期(cycle of ou…

linux线程 | 同步与互斥(上)

前言:本节内容主要是线程的同步与互斥。 本篇文章的主要内容都在讲解互斥的相关以及周边的知识。大体的讲解思路是通过数据不一致问题引出锁。 然后谈锁的使用以及申请锁释放锁的原子性问题。 那么, 废话不多说, 现在开始我们的学习吧&#x…

软件测试工程师面试整理 —— 操作系统与网络基础!

在软件测试中,了解操作系统和网络基础知识对于有效地进行测试工作至关重要。无论是在配置测试环境、调试网络问题,还是在进行性能测试和安全测试时,这些知识都是不可或缺的。 1. 操作系统基础 操作系统(Operating System, OS&am…

OgreNext高级材质中增加线宽,点大小,虚线模式绘制支持

修改Ogre高级材质系统,增加线宽,点大小,虚线模式,虚线参数的支持,效果如下: 需要修改的代码文件如下: 修改如下 代码文本: //范围[0.2 - 51] 0.2 * [0,255];Ogre::uint8 mLineWidth;//范围[…

【数据结构】:破译排序算法--数字世界的秩序密码(二)

文章目录 前言一.比较排序算法1.Bubble Sort冒泡排序1.1.冒泡排序原理1.2.冒泡排序过程1.3.代码实现1.4.复杂度和稳定性 2.Quick Sort快速排序2.1递归快速排序2.1.1.递归快速排序原理2.1.2.递归快速排序过程2.1.3.代码实现 2.2.非递归快速排序2.2.1.非递归快速排序原理2.2.2.非…

MATLAB智能优化算法-学习笔记(5)——蚁群算法求解容量受限的车辆路径问题

蚁群算法在求解容量受限的车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)中具有广泛应用。这类问题属于组合优化问题,涉及将若干辆具有容量限制的车辆,从配送中心出发为多个客户点提供服务,要求每辆车满足各客户的需求且总运载量不超过车辆容量,最终需要找到一…

python深浅拷贝,可变变量与不可变变量

赋值 在 python 中,赋值是将一个值或对象分配给一个变量的过程。赋值操作符是 ,用于将右侧的值或对象赋给左侧的变量。 赋值:l2的值会随着原对象l1的值一同改变 l1 [1, 2, 3, 4] print(l1:, l1) l2 l1 print(l2:, l2) 给li列表新增元素 …

检测头篇 | 手把手教你如何去更换YOLOv8的检测头为ASFF_Detect

前言:Hello大家好,我是小哥谈。自适应空间特征融合(ASFF)的主要原理旨在解决单次检测器中不同尺度特征的不一致性问题。具体来说,ASFF通过动态调整来自不同尺度特征金字塔层的特征贡献,确保每个检测对象的特征表示是一致且最优的。本文所做出的改进是将YOLOv8的检测头更换…

使用 Spring 框架构建 MVC 应用程序:初学者教程

Spring Framework 是一个功能强大、功能丰富且设计精良的 Java 平台框架。它提供了一系列编程和配置模型,旨在简化和精简 Java 中健壮且可测试的应用程序的开发过程。 人们常说 Java 太复杂了,构建简单的应用程序需要很长时间。尽管如此,Jav…

论文翻译 | OpenICL: An Open-Source Framework for In-context Learning

摘要 近年来,上下文学习(In-context Learning,ICL)越来越受到关注,并已成为大型语言模型(Large Language Model,LLM)评估的新范式。与传统微调方法不同,ICL无需更新任何参…

龙信科技:引领电子物证技术,助力司法公正

文章关键词:电子数据取证、电子物证、手机取证、计算机取证、云取证、介质取证 在信息技术飞速发展的今天,电子物证在司法领域扮演着越来越重要的角色。苏州龙信信息科技有限公司(以下简称“龙信科技”)作为电子数据取证领域的先…