Flink CDC同步mysql数据到doris

前置参考

flink快速安装:Flink入门-CSDN博客

doris快速安装:Apache Doris快速安装-CSDN博客

Flink CDC 是一个基于流的数据集成工具,旨在为用户提供一套功能更加全面的编程接口(API)。 该工具使得用户能够以 YAML 配置文件的形式,优雅地定义其 ETL(Extract, Transform, Load)流程,并协助用户自动化生成定制化的 Flink 算子并且提交 Flink 作业。 Flink CDC 在任务提交过程中进行了优化,并且增加了一些高级特性,如表结构变更自动同步(Schema Evolution)、数据转换(Data Transformation)、整库同步(Full Database Synchronization)以及 精确一次(Exactly-once)语义。

Flink CDC 深度集成并由 Apache Flink 驱动,提供以下核心功能:

  • ✅ 端到端的数据集成框架
  • ✅ 为数据集成的用户提供了易于构建作业的 API
  • ✅ 支持在 Source 和 Sink 中处理多个表
  • ✅ 整库同步
  • ✅具备表结构变更自动同步的能力(Schema Evolution),

如何使用 Flink CDC

Flink CDC 提供了基于 YAML 格式的用户 API,更适合于数据集成场景。以下是一个 YAML 文件的示例,它定义了一个数据管道(Pipeline),该Pipeline从 MySQL 捕获实时变更,并将它们同步到 Apache Doris:

source:type: mysqlhostname: localhostport: 3306username: rootpassword: 123456tables: app_db.\.*server-id: 5400-5404server-time-zone: UTCsink:type: dorisfenodes: 127.0.0.1:8030username: rootpassword: ""table.create.properties.light_schema_change: truetable.create.properties.replication_num: 1pipeline:name: Sync MySQL Database to Dorisparallelism: 2

通过使用 flink-cdc.sh 提交 YAML 文件,一个 Flink 作业将会被编译并部署到指定的 Flink 集群。 请参考 核心概念 以获取 Pipeline 支持的所有功能的完整文档说明。

Streaming ELT 同步 MySQL 到 Doris

这篇教程将展示如何基于 Flink CDC 快速构建 MySQL 到 Doris 的 Streaming ELT 作业,包含整库同步、表结构变更同步和分库分表同步的功能。 本教程的演示都将在 Flink CDC CLI 中进行,无需一行 Java/Scala 代码,也无需安装 IDE。

准备阶段

准备一台已经安装了 Docker 的 Linux 或者 MacOS 电脑。

  1. 下载 Flink 1.18.0,解压后得到 flink-1.18.0 目录。 使用下面的命令跳转至 Flink 目录下,并且设置 FLINK_HOME 为 flink-1.18.0 所在目录。

    cd flink-1.18.0
    
  2. 通过在 conf/flink-conf.yaml 配置文件追加下列参数开启 checkpoint,每隔 3 秒做一次 checkpoint。

    execution.checkpointing.interval: 3000
    
  3. 使用下面的命令启动 Flink 集群。

    ./bin/start-cluster.sh

启动成功的话,可以在 http://localhost:8081/访问到 Flink Web UI,如下所示:

Flink UI

多次执行 start-cluster.sh 可以拉起多个 TaskManager。

准备 Docker 环境

接下来的教程将以 docker-compose 的方式准备所需要的组件。

  1. 宿主机配置 由于 Doris 的运行需要内存映射支持,需在宿主机执行如下命令:

    sysctl -w vm.max_map_count=2000000
    

MacOS 由于内部实现容器的方式不同,在部署时宿主机直接修改max_map_count值可能无法成功,需要先创建以下容器:

docker run -it --privileged --pid=host --name=change_count debian nsenter -t 1 -m -u -n -i sh

容器创建成功执行以下命令:

sysctl -w vm.max_map_count=2000000

然后 exit 退出,创建 Doris Docker 集群。

  1. docker 镜像启动 使用下面的内容创建一个 docker-compose.yml 文件:

    version: '2.1'
    services:doris:image: yagagagaga/doris-standaloneports:- "8030:8030"- "8040:8040"- "9030:9030"mysql:image: debezium/example-mysql:1.1ports:- "3306:3306"environment:- MYSQL_ROOT_PASSWORD=123456- MYSQL_USER=mysqluser- MYSQL_PASSWORD=mysqlpw
    

该 Docker Compose 中包含的容器有:

  • MySQL: 包含商品信息的数据库 app_db
  • Doris: 存储从 MySQL 中根据规则映射过来的结果表

在 docker-compose.yml 所在目录下执行下面的命令来启动本教程需要的组件:

docker-compose up -d

该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。你可以通过 docker ps 来观察上述的容器是否正常启动了,也可以通过访问http://localhost:8030/ 来查看 Doris 是否运行正常。

在 MySQL 数据库中准备数据
  1. 进入 MySQL 容器

    docker-compose exec mysql mysql -uroot -p123456
    
  2. 创建数据库 app_db 和表 orders,products,shipments,并插入数据

    -- 创建数据库
    CREATE DATABASE app_db;USE app_db;-- 创建 orders 表
    CREATE TABLE `orders` (
    `id` INT NOT NULL,
    `price` DECIMAL(10,2) NOT NULL,
    PRIMARY KEY (`id`)
    );-- 插入数据
    INSERT INTO `orders` (`id`, `price`) VALUES (1, 4.00);
    INSERT INTO `orders` (`id`, `price`) VALUES (2, 100.00);-- 创建 shipments 表
    CREATE TABLE `shipments` (
    `id` INT NOT NULL,
    `city` VARCHAR(255) NOT NULL,
    PRIMARY KEY (`id`)
    );-- 插入数据
    INSERT INTO `shipments` (`id`, `city`) VALUES (1, 'beijing');
    INSERT INTO `shipments` (`id`, `city`) VALUES (2, 'xian');-- 创建 products 表
    CREATE TABLE `products` (
    `id` INT NOT NULL,
    `product` VARCHAR(255) NOT NULL,
    PRIMARY KEY (`id`)
    );-- 插入数据
    INSERT INTO `products` (`id`, `product`) VALUES (1, 'Beer');
    INSERT INTO `products` (`id`, `product`) VALUES (2, 'Cap');
    INSERT INTO `products` (`id`, `product`) VALUES (3, 'Peanut');
    
Create database in Doris

Doris 暂时不支持自动创建数据库,需要先创建写入表对应的数据库。

  1. 进入 Doris Web UI。
    http://localhost:8030/
    默认的用户名为 root,默认密码为空。

    Doris UI

  2. 通过 Web UI 创建 app_db 数据库

    create database app_db;
    

    Doris create table

通过 FlinkCDC cli 提交任务

  1. 下载下面列出的二进制压缩包,并解压得到目录 flink cdc-3.0.0 '
    flink-cdc-3.0.0-bin.tar.gz. flink-cdc-3.0.0 下会包含 binliblogconf 四个目录。

  2. 下载下面列出的 connector 包,并且移动到 lib 目录下 下载链接只对已发布的版本有效, SNAPSHOT 版本需要本地基于 master 或 release- 分支编译.

    • MySQL pipeline connector 3.0.0
    • Apache Doris pipeline connector 3.0.0

3.编写任务配置 yaml 文件 下面给出了一个整库同步的示例文件 mysql-to-doris.yaml

################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:type: mysqlhostname: localhostport: 3306username: rootpassword: 123456tables: app_db.\.*server-id: 5400-5404server-time-zone: UTCsink:type: dorisfenodes: 127.0.0.1:8030username: rootpassword: ""table.create.properties.light_schema_change: truetable.create.properties.replication_num: 1pipeline:name: Sync MySQL Database to Dorisparallelism: 2

其中: source 中的 tables: app_db.\.* 通过正则匹配同步 app_db 下的所有表。 sink 添加 table.create.properties.replication_num 参数是由于 Docker 镜像中只有一个 Doris BE 节点。

  1. 最后,通过命令行提交任务到 Flink Standalone cluster
    bash bin/flink-cdc.sh mysql-to-doris.yaml
    

提交成功后,返回信息如:

Pipeline has been submitted to cluster.
Job ID: ae30f4580f1918bebf16752d4963dc54
Job Description: Sync MySQL Database to Doris

在 Flink Web UI,可以看到一个名为 Sync MySQL Database to Doris 的任务正在运行。

MySQL-to-Doris

打开 Doris 的 Web UI,可以看到数据表已经被创建出来,数据能成功写入。

Doris display data

同步变更

进入 MySQL 容器

 docker-compose exec mysql mysql -uroot -p123456

接下来,修改 MySQL 数据库中表的数据,Doris 中显示的订单数据也将实时更新:

  1. 在 MySQL 的 orders 表中插入一条数据

    INSERT INTO app_db.orders (id, price) VALUES (3, 100.00);
    
  2. 在 MySQL 的 orders 表中增加一个字段

    ALTER TABLE app_db.orders ADD amount varchar(100) NULL;
    
  3. 在 MySQL 的 orders 表中更新一条数据

    UPDATE app_db.orders SET price=100.00, amount=100.00 WHERE id=1;
    
  4. 在 MySQL 的 orders 表中删除一条数据

    DELETE FROM app_db.orders WHERE id=2;
    

每执行一步就刷新一次 Doris Web UI,可以看到 Doris 中显示的 orders 数据将实时更新,如下所示:

Doris display result

同样的,去修改 shipmentsproducts 表,也能在 Doris 中实时看到同步变更的结果。

Route the changes

Flink CDC 提供了将源表的表结构/数据路由到其他表名的配置,借助这种能力,我们能够实现表名库名替换,整库同步等功能。 下面提供一个配置文件说明:

################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:type: mysqlhostname: localhostport: 3306username: rootpassword: 123456tables: app_db.\.*server-id: 5400-5404server-time-zone: UTCsink:type: dorisfenodes: 127.0.0.1:8030benodes: 127.0.0.1:8040username: rootpassword: ""table.create.properties.light_schema_change: truetable.create.properties.replication_num: 1route:- source-table: app_db.orderssink-table: ods_db.ods_orders- source-table: app_db.shipmentssink-table: ods_db.ods_shipments- source-table: app_db.productssink-table: ods_db.ods_productspipeline:name: Sync MySQL Database to Dorisparallelism: 2

通过上面的 route 配置,会将 app_db.orders 表的结构和数据同步到 ods_db.ods_orders 中。从而实现数据库迁移的功能。 特别地,source-table 支持正则表达式匹配多表,从而实现分库分表同步的功能,例如下面的配置:

route:- source-table: app_db.order\.*sink-table: ods_db.ods_orders

这样,就可以将诸如 app_db.order01app_db.order02app_db.order03 的表汇总到 ods_db.ods_orders 中。注意,目前还不支持多表中存在相同主键数据的场景,将在后续版本支持。

环境清理

本教程结束后,在 docker-compose.yml 文件所在的目录下执行如下命令停止所有容器:

docker-compose down

在 Flink 所在目录 flink-1.18.0 下执行如下命令停止 Flink 集群:

./bin/stop-cluster.sh

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/447800.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习如何将Spring Boot Jar包注册成Windows服务

​ 博客主页: 南来_北往 系列专栏:Spring Boot实战 在开发Spring Boot应用时,我们通常通过命令行或IDE手动启动项目。然而,在生产环境中,为了提升效率和稳定性,我们更希望应用能够自动启动,并且作为Wi…

LeetCode|70.爬楼梯

这道题很像斐波那契数列,但是初始值不同,也有动态规划的解法,但是一开始我想到的是递归写法。现在我们站在第n阶台阶,那么,我们上一步就有两种可能:1、我们从第n-1阶台阶走一步上来的;2、我们从…

OBOO鸥柏品牌实力怎么样?权威解析

OBOO鸥柏(深圳市鸥柏科技有限公司)作为国内较大规模的高新技术生产制造型企业,定位于商用显示领域高端品牌,在工业级/商用级智能液晶显示及触控查询软硬件终端领域展现出了强劲的实力。以下是对OBOO鸥柏实力的详细权威分析&#x…

【大数据技术基础 | 实验一】配置SSH免密登录

文章目录 一、实验目的二、实验要求三、实验原理(一)大数据实验一体机(二)SSH免密认证 四、实验环境五、实验内容和步骤(一)搭建集群服务器(二)添加域名映射(三&#xff…

Zsh 安装与配置

目录 1 环境配置 1.1 基本工具安装 1.2 安装 oh-my-zsh 1.3 从.bashrc中迁移配置(可选) 2 主题配置 2.1 内置主题 2.2 自定义主题 2.2.1 推荐主题 3 插件安装 3.1 推荐插件 3.1.1 zsh -autosuggestions 3.1.2 zsh-syntax-highlighting 3.2 启…

一键快捷回复软件助力客服高效沟通

双十一临近,电商大战一触即发!在这个购物狂欢的热潮中,客服团队的效率至关重要。今天我要和大家分享一个非常实用的快捷回复软件,特别是为电商客服小伙伴们准备的。这款软件能够极大地提高你的工作效率,让你在处理客户…

优化UVM环境(三)-环境发包较多时,会触发timeout

书接上回: 优化UVM环境(一)-环境结束靠的是timeout,而不是正常的objection结束 优化UVM环境(二)-将error/fatal红色字体打印,pass绿色字体打印 环境发包较多时,会触发timeout 解决…

高阶数据结构与算法——红黑树の奥秘

1.认识红黑树 1.1红黑树的概念 红⿊树是⼀棵⼆叉搜索树,他的每个结点增加⼀个存储位来表⽰结点的颜⾊,可以是红⾊或者⿊⾊。通过对任何⼀条从根到叶⼦的路径上各个结点的颜⾊进⾏约束,红⿊树确保没有⼀条路径会⽐其他路径⻓出2倍&#xff0c…

“我们为什么缺少科学精神”演讲内容拆解

演讲人张双南,视频链接: https://tv.cctv.com/2017/04/23/VIDEdqzdpmxStYXAmYBdgDP7170423.shtml

PicGo+Gitee搭建Typora图床

PicGoGitee搭建Typora图床 下载PicGo 下载链接:https://picgo.github.io/PicGo-Doc/zh/guide/#%E4%B8%8B%E8%BD%BD%E5%AE%89%E8%A3%85 配置PicGo 插件安装 在PicGo的【插件设置】中搜索gitee-uploader插件并安装 在【图床设置】下配置Gitee repo:用…

车载 3D 地图如何从技术上实现渲染品质的全面提升?

随着汽车由单纯的交通工具、“硬件为主”的工业产品向智能化终端、“第三空间”转变。3D HMI 已成为整车厂打造极致沉浸感与数字豪华感的“标配”。实时光影、昼夜交替、天气变化、地面反射、动态植被……高沉浸感、自然交互的 3D 地图为驾驶者营造身临其境的视觉享受&#xff…

VMware免安装直接使用Win7成品虚拟机

VM虚拟机免安装直接使用Win7 下载文件 Win7成品虚拟机下载 ⏬下载链接⏬ 下载链接 使用虚拟机打开成品虚拟机

【前端】制作属于自己的网页(1)

好的&#xff01;你可以使用以下的HTML代码创建一个简单的网页&#xff0c;标题为“第一个网页”&#xff1a; html <!DOCTYPE html> <html lang"zh"> <head> <meta charset"UTF-8"> <meta name"viewport" conten…

动态网站及爬虫技术应用(题目)

/*T26:HTTP响应消息的状态代码为500时表示&#xff08; &#xff09;: HTTP响应消息的状态代码为500时表示服务器内部错误&#xff08;Internal Server Error&#xff09;。这通常意味着服务器在处理请求时遇到了意外的情况&#xff0c;导致无法完成该请求。这种错误可能是由于…

Linux--多路转接之epoll

上一篇:Linux–多路转接之select epoll epoll 是 Linux 下多路复用 I/O 接口 select/poll 的增强版本&#xff0c;它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统 CPU 利用率。它是 Linux 下多路复用 API 的一个选择&#xff0c;相比 select 和 poll&#xff0c…

Linux性能调优,还可以从这些方面入手

linux是目前最常用的操作系统&#xff0c;下面是一些常见的 Linux 系统调优技巧&#xff0c;在进行系统调优时&#xff0c;需要根据具体的系统负载和应用需求进行调整&#xff0c;并进行充分的测试和监控&#xff0c;以确保系统的稳定性和性能。同时&#xff0c;调优过程中要谨…

【云原生技术】Docker容器进阶知识

文章目录 namespace概述一、namespace的基本概念二、namespace的主要作用三、namespace的类型四、namespace的操作五、namespace在容器技术中的应用 cgroup一、cgroup的基本概念二、cgroup的主要功能三、cgroup的子系统介绍四、cgroup的应用场景五、cgroup的使用与管理 cgroup和…

.ts文件编译为.js文件

.ts文件如何编译为.js文件 首先安装了tsc $ npm install -g typescript可以使用如下命令检查是否安装tsc,出现版本号则说明安装成功 tsc -v创建.ts文件 创建 1.ts&#xff0c;编写代码如下&#xff1a; function test(a:string):string{return a }编译为.js文件 执行如下…

Spring Cloud环境搭建

一.开发环境推荐 JDK建议使用JDK17。 因为SpringCloud是基于SpringBoot进行开发的&#xff0c;SpringBoot3.X以下的版本&#xff0c;Spring官方已经不再维护了&#xff08;还可以继续使用&#xff09;&#xff0c;SpringBoot3.X的版本使用的JDK版本基线是17&#xff0c;而且1…

IPv 4

IP协议 网络层主要由IP&#xff08;网际协议&#xff09;和ICMP&#xff08;控制报文协议&#xff09;构成&#xff0c;对应OSI中的网络层&#xff0c;网络层以实现逻辑层面点对点通信为目的。目前应用最广泛的IP协议为IPv4 基本概念给出 主机&#xff1a;配有IP地址但不具有路…