开源医疗大模型Llama3-Aloe-8B-Alpha,性能超越 MedAlpaca 和 PMC-LLaMA

前言

近年来,大型语言模型 (LLM) 在医疗领域展现出巨大潜力,能够帮助医生和研究人员更快地获取信息、分析数据,并提高医疗服务效率。然而,目前市场上大多数医疗 LLM 都是闭源模型,限制了其在学术研究和应用领域的推广。为了打破这一现状,促进医疗 AI 的发展,越来越多的研究团队开始致力于开发开源的医疗 LLM。

技术特点

Llama3-Aloe-8B-Alpha 是由巴塞罗那超级计算中心 (BSC) 和巴塞罗那理工大学 (UPC) 联合开发的开源医疗大模型,其基于 Meta 的 Llama 3 模型进行微调,并采用了多种技术手段来提升模型的性能和可靠性。

  • Huggingface模型下载: huggingface.co/HPAI-BSC/Ll…
  • AI 快站模型免费加速下载: aifasthub.com/models/HPAI…

  • 基于 Llama 3 模型,拥有强大语言基础

Llama3-Aloe-8B-Alpha 以 Meta 的 Llama 3 模型为基础,继承了 Llama 3 模型在语言理解和生成方面的优势。Llama 3 模型经过了海量数据的训练,能够理解和生成各种形式的文本内容,为医疗领域提供了强大的语言处理能力。值得注意的是,Llama 3 8B 模型本身已经展现出了令人瞩目的性能,在各种语言、推理、编码和数学基准测试中,都超越了同等大小甚至更大的模型性能。

  • 合成数据 增强,提升模型的专业性

为了提升模型在医疗领域的专业性,研究团队采用了合成数据增强技术。他们利用 Mixtral-8x7B 模型,根据医学问答数据集的训练集生成大量的 CoT (Chain of Thought) 答案,并将其加入到模型的训练数据中。CoT 的核心思想是引导模型通过逐步推理来解决问题,例如,在处理多选题时,模型会先概括问题,然后分析每个选项,最后通过推理步骤得出最终答案。这种策略可以帮助模型更深入地理解医学问题,并生成更合理的答案。

  • 模型合并和对齐,提升模型的鲁棒性和安全性

研究团队将多个经过指令微调的 Llama 3 模型进行合并,并通过直接偏好优化 (DPO) 对模型进行了对齐训练,以提升模型的鲁棒性和安全性。模型合并的目的是结合不同模型的优势,提高模型的泛化能力。DPO 训练则通过收集人类对模型生成结果的偏好数据,对模型进行微调,使其更符合人类的价值观和道德规范。

性能表现

Llama3-Aloe-8B-Alpha 在多个医疗领域基准测试中展现出优异的性能,其性能超越了 MedAlpaca 和 PMC-LLaMA 等其他开源医疗大模型。

  • 医疗领域基准测试表现出色

Llama3-Aloe-8B-Alpha 在 MedMCQA、MedQA 和 PubMedQA 等医疗领域基准测试中,展现出了领先的性能。

  • MedMCQA: 该数据集包含来自印度医学院入学考试的 4,183 个 4 选项选择题。
  • MedQA: 该数据集包含 1,273 个美国医疗执照考试 (USMLE) 问题,每个问题有 4 或 5 个选项。
  • PubMedQA: 该数据集包含 1,000 个专业标注的 PubMed 文献问答样本。

在这些测试中,Llama3-Aloe-8B-Alpha 表现出色,例如,在 PubMedQA 测试中,其表现超过了 Meditron 70B 模型,说明了其在医学信息检索和理解方面的优势。

  • 对齐训练提升模型安全性

Llama3-Aloe-8B-Alpha 通过直接偏好优化 (DPO) 对模型进行安全对齐,能够在回答问题时更加安全可靠,降低了模型产生有害或不道德内容的风险。研究团队通过收集人类对模型生成结果的偏好数据,对模型进行了微调,使其更符合人类的价值观和道德规范。

应用场景

Llama3-Aloe-8B-Alpha 可以应用于多个医疗领域的场景,例如:

  • 医学信息检索: 帮助医生快速查找和理解相关文献,提高诊断和治疗效率。
  • 医学问答: 回答医生的专业问题,帮助他们更好地理解疾病、药物和治疗方案。
  • 医学文本摘要: 将大量的医学文献和报告进行摘要,方便医生快速了解关键信息。
  • 医学数据分析: 协助研究人员分析医学数据,寻找疾病的病因和治疗方法。
总结

Llama3-Aloe-8B-Alpha 的开源发布,为医疗 AI 研究和应用领域提供了强大的工具,它不仅展现出了优异的性能,还通过对齐训练提高了模型的安全性,并通过合成数据增强提升了模型的专业性。随着技术的不断发展,相信 Llama3-Aloe-8B-Alpha 会在更多医疗场景发挥重要作用,为人类健康事业贡献力量。

模型下载

Huggingface模型下载

huggingface.co/HPAI-BSC/Ll…

AI快站模型免费加速下载

aifasthub.com/models/HPAI…

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/448521.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Arduino的仿生面具

DIY 万圣节恐怖惊喜:自制动态眼动和声音感应的仿生面具 引言 万圣节即将来临,你是否准备好制作一些既诡异又迷人的装饰来增添节日气氛呢?今天,我们将一起探索如何使用3D打印、伺服电机、PIR传感器和DFPlayer MP3模块来制作一个动…

【黑马redis高级篇】持久化

//来源[01,05]分布式缓存 除了黑马,还参考了别的。 目录 1.单点redis问题及解决方案2.为什么需要持久化?3.Redis持久化有哪些方式呢?为什么我们需要重点学RDB和AOF?4.RDB4.1 定义4.2 触发方式4.2.1手动触发save4.2.2被动触发bgsa…

STM32 ADC学习日记

STM32 ADC学习日记 1. ADC简介 ADC 即模拟数字转换器,英文详称 Analog-to-digital converter,可以将外部的模拟信号转换为数字信号。 STM32F103 系列芯片拥有 3 个 ADC(C8T6 只有 2 个),这些 ADC 可以独立使用&…

《中国林业产业》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答 问:《中国林业产业》是不是核心期刊? 答:不是,是知网收录的正规学术期刊。 问:《中国林业产业》级别? 答:国家级。主管单位:国家林业和草原局 …

【Linux】system V进程间通信--共享内存,消息队列,信号量

目录 共享内存 基本原理 创建共享内存 共享内存创建好后,我们可以查询共享内存,验证一下是否创建成功; 删除共享内存 共享内存的挂接 实现通信 消息队列(了解) 消息队列概念 消息队列接口 操作指令 信号量…

从MySQL到OceanBase离线数据迁移的实践

本文作者:玉璁,OceanBase 生态产品技术专家。工作十余年,一直在基础架构与中间件领域从事研发工作。现负责OceanBase离线导数产品工具的研发工作,致力于为 OceanBase 建设一套完善的生态工具体系。 背景介绍 在互联网与云数据库技…

番外篇 | 史上最全的关于CV的一些经典注意力机制代码汇总

前言:Hello大家好,我是小哥谈。注意力是人类认知系统的核心部分,它允许我们在各种感官输入中筛选和专注于特定信息。这一能力帮助我们处理海量的信息,关注重要的事物,而不会被次要的事物淹没。受到人类认知系统的启发,计算机科学家开发了注意力机制,这种机制模仿人类的这…

鸿蒙跨设备协同开发04——跨设备剪切板开发

如果你也对鸿蒙开发感兴趣,加入“Harmony自习室”吧!扫描下方名片,关注公众号,公众号更新更快,同时也有更多学习资料和技术讨论群。 1、概述 当用户拥有多台设备时,可以通过跨设备剪贴板的功能&#xff0c…

2. MySQL数据库基础

一、数据库的操作 1. 显示当前的数据库 SHOW DATABASES;2. 创建数据库 语法: CREATE DATABASE [IF NOT EXISTS] db_name [create_specification...];//create_specification包括:[DEFAULT] CHARACTER SET charset_name[DEFAULT] COLLATE collation_n…

【题解】【记忆化递归】——Function

【题解】【记忆化递归】——Function Function题目描述输入格式输出格式输入输出样例输入 #1输出 #1 提示数据规模与约定 1.思路解析2.AC代码 Function 通往洛谷的传送门 题目描述 对于一个递归函数 w ( a , b , c ) w(a,b,c) w(a,b,c) 如果 a ≤ 0 a \le 0 a≤0 或 b ≤…

2025年广西高考报名流程图解(手机端)

广西 2025 年高考报名时间已经确定啦,从 2024 年 10 月 21 日开始,到 10 月 31 日 17:30 结束 💻【报名路径】 有电脑端和手机端两种选择哦。 电脑端:登录 “广西招生考试院” 网站(https://www.gxeea.cn&#xff0…

SQL数据库刷题sql_day34(移动平均值、累计求和)

描述 移动平均值 1.求不同产品 每个月以及截至当前月最近3个月的平均销售额 2.求不同产品截至当前月份的累计销售额 数据准备 mysql CREATE TABLE sales_monthly (product VARCHAR(20),ym VARCHAR(10),amount DECIMAL(10,2) );-- 插入测试数据 INSERT INTO sales_monthly (prod…

厨房老鼠数据集:掀起餐饮卫生监测的科技浪潮

厨房老鼠数据集:掀起餐饮卫生监测的科技浪潮 摘要:本文深入探讨了厨房老鼠数据集在餐饮行业卫生管理中的重要性及其相关技术应用。厨房老鼠数据集通过收集夜间厨房图像、老鼠标注信息以及环境数据,为深度学习模型提供了丰富的训练样本。基于…

目前我国网络安全人才市场状况

网络安全人才市场状况 本章以智联招聘多年来形成的丰富的招聘、求职信息大数据为基础,结合了奇安信集团 在网络安全领域多年来的专业研究经验,相关研究成果具有很强的代表性。对涉及安全人才 的全平台招聘需求与求职简历进行分析(注&#xf…

Ajax(web笔记)

文章目录 1.Ajax的概念2.Ajax 的作用3.原生Ajax4.Axios4.1Axios的概念4.2Axios入门 1.Ajax的概念 AsynchronousJavaScriptAndXML,异步的JavaScript和XML 2.Ajax 的作用 数据交换:过Ajax可以给服务器发送请求,并获取服务器响应的数据。异步交互:可以在…

小猿口算辅助工具(nodejs版)

github 地址:https://github.com/pbstar/xyks-helper 实现原理 通过屏幕截图截取到题目区域的两个数字,然后通过 ocr 识别出数字,最后通过计算得出答案,并通过模拟鼠标绘制答案。 依赖插件 node-screenshots:屏幕截…

ai搜索工具免费的有那些?这几年搜索都发生了哪些变化?

前言这几年大家的搜索都发生了哪些变化? 要说疯狂的就属于AI工具了,以前搜索内容有广告自己只能眼巴巴的看着,现在不少人的搜索行为都有所变化,经过自己测试也给大家推荐一些自己使用的AI搜索工具毕竟免费。AI对传统搜索影响在传…

linux 虚拟环境下源码安装DeepSpeed

第一步:创建虚拟环境: conda create -n deepspeed python3.10 第二步:进入虚拟环境,安装Pytorch 2.3.1 # CUDA 12.1 conda install pytorch2.3.1 torchvision0.18.1 torchaudio2.3.1 pytorch-cuda12.1 -c pytorch -c nvidia 第…

测试教程分享

前几年在腾讯课堂上发布了不少课程,后来腾讯课堂改革,要收会员费,课程还要抽提程,这么下来就相当于白干了。就放弃了在上面发课程,再后来腾讯课堂就关闭了,以前发布的视频就没有地方发了,于是我…

Android MQTT调试助手开发

在Android开发中,与远程服务器进行通信是一个常见的需求。MQTT(Message Queuing Telemetry Transport)是一种轻量级的、基于发布/订阅模式的消息传输协议,广泛应用于物联网(IoT)场景中。在阿里云物联网平台…