Unity中实现预制体自动巡逻与攻击敌人的完整实现指南

在这里插入图片描述

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。
🍎个人主页:Java Fans的博客
🍊个人信条:不迁怒,不贰过。小知识,大智慧。
💞当前专栏:Java案例分享专栏
✨特色专栏:国学周更-心性养成之路
🥭本文内容:Unity中实现预制体自动巡逻与攻击敌人的完整实现指南

文章目录

    • 前言
    • 1. 巡逻功能:
      • 1.1 引入命名空间
      • 1.2 定义 Patrol 类
      • 1.3 声明公共变量
      • 1.4 声明私有变量
      • 1.5 Start 方法
      • 1.6 Update 方法
      • 1.7 设置随机巡逻点的逻辑
      • 1.8 巡逻等待的协程
      • 1.9 巡逻功能总结
    • 2. 发现敌人:
      • 2.1 类声明
      • 2.2 声明公共变量
      • 2.3 声明私有变量
      • 2.4 Update 方法
      • 2.5 MoveToEnemy 方法
      • 2.6 发现敌人总结
    • 3. 攻击敌人:
      • 3.1 类声明
      • 3.2 声明公共变量
      • 3.3. 声明私有变量
      • 3.4. Update 方法
      • 3.5 Attack 方法
      • 3.6 攻击敌人总结
    • 4. 整合逻辑:
      • 4.1 定义枚举类型
      • 4.2 声明当前状态
      • 4.3 Update 方法
        • 4.3.1 巡逻状态
        • 4.3.2 追逐状态
        • 4.3.3 攻击状态
      • 4.4 整合逻辑总结
    • 总结

前言

  在当今游戏开发领域,自动化行为技术的应用已经成为游戏开发者们追求的热门话题。无论是为了增加游戏的趣味性、提升游戏体验,还是为了减轻开发者的工作负担,实现预制体自动化行为已经成为许多游戏项目的必备功能之一。本文将深入探讨如何在Unity游戏引擎中实现预制体自动巡逻并攻击敌人的全过程。

  在游戏开发中,预制体是一种非常常见的游戏对象,它们可以被重复使用并在场景中多次实例化。然而,让预制体具备自主行为、能够在游戏世界中自主移动、探索并与敌人交互,是一项具有挑战性的任务。本文将引导读者逐步实现预制体的自动化行为,包括目标位置到达后的随机巡逻、敌人发现与追击、攻击等关键步骤。

  通过本文的指导,读者将深入了解自动化行为背后的技术原理,学习如何利用Unity强大的功能和工具,为游戏角色赋予更加智能和自主的行为。无论是想要开发一款冒险游戏、射击游戏还是策略游戏,本文都将为您提供宝贵的指导和灵感,帮助您实现游戏中角色的自动化行为,为玩家带来更加丰富和有趣的游戏体验。

1. 巡逻功能:

  预制体在到达目标位置后,会在设定的范围内随机选择一个点作为新的目标位置,并移动到该点。

using UnityEngine;
using UnityEngine.AI;public class Patrol : MonoBehaviour
{public Transform centerPoint; // 巡逻的中心点public float patrolRadius = 10f; // 巡逻半径public float patrolWaitTime = 2f; // 巡逻停留时间private NavMeshAgent agent;private Vector3 targetPosition;void Start(){agent = GetComponent<NavMeshAgent>();SetRandomPatrolPoint();}void Update(){if (!agent.pathPending && agent.remainingDistance < 0.5f){StartCoroutine(PatrolWait());}}// 设置随机的巡逻点void SetRandomPatrolPoint(){Vector3 randomDirection = Random.insideUnitSphere * patrolRadius;randomDirection += centerPoint.position;NavMeshHit hit;NavMesh.SamplePosition(randomDirection, out hit, patrolRadius, 1);targetPosition = hit.position;agent.SetDestination(targetPosition);}// 巡逻点到达后的等待IEnumerator PatrolWait(){yield return new WaitForSeconds(patrolWaitTime);SetRandomPatrolPoint();}
}

  这段代码是一个 Unity 脚本,主要用于实现一个 AI 角色的巡逻行为。下面是对代码的逐行解释:

1.1 引入命名空间

using UnityEngine;
using UnityEngine.AI;
  • UnityEngine 是 Unity 的核心命名空间,包含大多数常用类。

  • UnityEngine.AI 是用于处理导航和 AI 行为的命名空间,包含 NavMeshAgent 类。

1.2 定义 Patrol 类

public class Patrol : MonoBehaviour

  定义一个名为 Patrol 的公共类,继承自 MonoBehaviour。这使得 Patrol 可以被附加到 Unity 的游戏对象上,并具有 Unity 生命周期方法(如 Start 和 Update)。

1.3 声明公共变量

public Transform centerPoint; // 巡逻的中心点
public float patrolRadius = 10f; // 巡逻半径
public float patrolWaitTime = 2f; // 巡逻停留时间
  • centerPoint: 一个 Transform 类型的公共变量,用于定义巡逻的中心点(AI 角色的巡逻范围中心)。

  • patrolRadius: 一个 float 类型的公共变量,定义 AI 角色巡逻的半径,默认为 10。

  • patrolWaitTime: 一个 float 类型的公共变量,定义 AI 角色在每个巡逻点停留的时间,默认为 2 秒。

1.4 声明私有变量

private NavMeshAgent agent;
private Vector3 targetPosition;
  • agent: 一个 NavMeshAgent 类型的私有变量,用于获取和控制 AI 角色的导航行为。

  • targetPosition: 一个 Vector3 类型的私有变量,用于存储 AI 角色当前巡逻的目标位置。

1.5 Start 方法

void Start()
{agent = GetComponent<NavMeshAgent>();SetRandomPatrolPoint();
}

Start 方法在游戏开始时被调用。

  • agent = GetComponent(): 获取附加在该游戏对象上的 NavMeshAgent 组件,并将其赋值给 agent 变量。

  • SetRandomPatrolPoint(): 调用 SetRandomPatrolPoint 方法,初始化 AI 的巡逻目标点。

1.6 Update 方法

void Update()
{if (!agent.pathPending && agent.remainingDistance < 0.5f){StartCoroutine(PatrolWait());}
}

Update 方法在每一帧被调用。

  • if (!agent.pathPending && agent.remainingDistance < 0.5f): 检查 AI 角色是否已经到达目标位置(remainingDistance 小于 0.5 表示接近目标)。pathPending 表示当前是否还有路径计算未完成。

  • StartCoroutine(PatrolWait()): 如果到达目标位置,则启动一个协程,调用 PatrolWait 方法。

1.7 设置随机巡逻点的逻辑

void SetRandomPatrolPoint()
{Vector3 randomDirection = Random.insideUnitSphere * patrolRadius;randomDirection += centerPoint.position;NavMeshHit hit;NavMesh.SamplePosition(randomDirection, out hit, patrolRadius, 1);targetPosition = hit.position;agent.SetDestination(targetPosition);
}
  • Vector3 randomDirection = Random.insideUnitSphere * patrolRadius;: 生成一个在球体内的随机方向,并乘以 patrolRadius,以得到一个随机方向的偏移量。

  • randomDirection += centerPoint.position;: 将随机偏移量添加到巡逻中心点的坐标,确定目标位置。

  • NavMeshHit hit;: 声明一个 NavMeshHit 变量,用于接收导航网格采样结果。

  • NavMesh.SamplePosition(randomDirection, out hit, patrolRadius, 1);: 在 randomDirection 位置附近采样,找到一个有效的导航网格位置,并将结果存储在 hit 中。

  • targetPosition = hit.position;: 将有效的目标位置赋值给 targetPosition。

  • agent.SetDestination(targetPosition);: 将 AI 角色的目标位置设置为新的巡逻点,使其开始移动。

1.8 巡逻等待的协程

IEnumerator PatrolWait()
{yield return new WaitForSeconds(patrolWaitTime);SetRandomPatrolPoint();
}
  • IEnumerator PatrolWait(): 定义一个协程方法,允许使用 yield return。

  • yield return new WaitForSeconds(patrolWaitTime);: 暂停协程执行,等待 patrolWaitTime 秒。

  • SetRandomPatrolPoint();: 等待结束后,调用 SetRandomPatrolPoint 方法,设置新的巡逻目标点。

1.9 巡逻功能总结

  这段代码实现了一个 AI 角色在指定中心点周围巡逻的行为。它会在每个目标点停留一定时间后,再随机选择新的目标点,并利用 Unity 的导航系统(NavMesh)来处理移动。这样可以创建一个简单的巡逻行为,适用于 NPC(非玩家角色)在游戏中的导航。

2. 发现敌人:

  在巡逻过程中,如果在一定范围内发现敌人(使用 Physics.OverlapSphere 或者 Physics.Raycast),预制体会停止巡逻并向敌人移动。

public class DetectEnemy : MonoBehaviour
{public float detectionRadius = 15f; // 发现敌人的范围public LayerMask enemyLayer; // 敌人的图层private GameObject enemyTarget;void Update(){Collider[] hitColliders = Physics.OverlapSphere(transform.position, detectionRadius, enemyLayer);if (hitColliders.Length > 0){enemyTarget = hitColliders[0].gameObject;MoveToEnemy();}}void MoveToEnemy(){NavMeshAgent agent = GetComponent<NavMeshAgent>();agent.SetDestination(enemyTarget.transform.position);}
}

  这段 Unity 脚本代码实现了一个 AI 角色检测敌人并朝向敌人移动的功能。下面是对代码逐行的解释:

2.1 类声明

public class DetectEnemy : MonoBehaviour

  定义一个名为 DetectEnemy 的公共类,继承自 MonoBehaviour。这意味着该类可以被附加到 Unity 中的游戏对象,并能够使用 Unity 的生命周期方法。

2.2 声明公共变量

public float detectionRadius = 15f; // 发现敌人的范围
public LayerMask enemyLayer; // 敌人的图层
  • detectionRadius: 一个公共变量,类型为 float,用于定义 AI 角色检测敌人的半径,默认为 15。

  • enemyLayer: 一个公共变量,类型为 LayerMask,用于指定哪些图层被视为敌人。这使得该 AI 角色能够仅检测特定类型的对象。

2.3 声明私有变量

private GameObject enemyTarget;
  • enemyTarget: 一个私有变量,类型为 GameObject,用于存储检测到的敌人对象的引用。

2.4 Update 方法

void Update()
{Collider[] hitColliders = Physics.OverlapSphere(transform.position, detectionRadius, enemyLayer);if (hitColliders.Length > 0){enemyTarget = hitColliders[0].gameObject;MoveToEnemy();}
}

Update 方法在每一帧被调用,用于检查和更新 AI 角色的状态。

  • Collider[] hitColliders = Physics.OverlapSphere(transform.position, detectionRadius, enemyLayer);: 使用 Physics.OverlapSphere 方法在 AI 角色的位置(transform.position)周围创建一个球体,以 detectionRadius 为半径,检测所有与 enemyLayer 图层相交的碰撞体(即敌人)。返回的碰撞体存储在 hitColliders 数组中。

  • if (hitColliders.Length > 0): 检查是否检测到了任何敌人(即 hitColliders 数组的长度是否大于 0)。

  • enemyTarget = hitColliders[0].gameObject;: 如果检测到敌人,获取第一个敌人的引用,并将其赋值给 enemyTarget 变量。

  • MoveToEnemy();: 调用 MoveToEnemy 方法,指示 AI 角色朝向敌人移动。

2.5 MoveToEnemy 方法

void MoveToEnemy()
{NavMeshAgent agent = GetComponent<NavMeshAgent>();agent.SetDestination(enemyTarget.transform.position);
}
  • void MoveToEnemy(): 定义一个私有方法,用于处理朝向敌人移动的逻辑。

  • NavMeshAgent agent = GetComponent();: 获取附加在该游戏对象上的 NavMeshAgent 组件,并将其赋值给 agent 变量,以便使用导航功能。

  • agent.SetDestination(enemyTarget.transform.position);: 将 AI 角色的目标位置设置为 enemyTarget(即敌人)的当前位置,使 AI 角色开始向敌人移动。

2.6 发现敌人总结

  这段代码实现了一个基本的敌人检测系统,允许 AI 角色在指定半径内检测到敌人,并朝向第一个检测到的敌人移动。它利用 Unity 的物理系统(Physics.OverlapSphere)和导航系统(NavMeshAgent)来实现这一功能。这个脚本可以用于游戏中 AI 角色的敌人追踪行为。

3. 攻击敌人:

  当预制体靠近敌人一定距离时,执行攻击动作。

public class AttackEnemy : MonoBehaviour
{public float attackRange = 2f; // 攻击范围public float attackCooldown = 1.5f; // 攻击冷却时间private float lastAttackTime;void Update(){if (enemyTarget != null && Vector3.Distance(transform.position, enemyTarget.transform.position) <= attackRange){if (Time.time >= lastAttackTime + attackCooldown){Attack();lastAttackTime = Time.time;}}}void Attack(){// 攻击行为,例如减去敌人生命值Debug.Log("Attacking the enemy!");}
}

  这段 Unity 脚本代码实现了一个 AI 角色攻击敌人的功能。下面是对代码逐行的解释:

3.1 类声明

public class AttackEnemy : MonoBehaviour

  定义一个名为 AttackEnemy 的公共类,继承自 MonoBehaviour。这意味着该类可以被附加到 Unity 的游戏对象上,并能够使用 Unity 的生命周期方法。

3.2 声明公共变量

public float attackRange = 2f; // 攻击范围
public float attackCooldown = 1.5f; // 攻击冷却时间
  • attackRange: 一个公共变量,类型为 float,用于定义 AI 角色攻击的有效范围,默认为 2(单位通常为米)。

  • attackCooldown: 一个公共变量,类型为 float,用于定义攻击之间的冷却时间,默认为 1.5 秒。

3.3. 声明私有变量

private float lastAttackTime;
  • lastAttackTime: 一个私有变量,类型为 float,用于记录上一次攻击的时间。这有助于管理攻击的冷却时间。

3.4. Update 方法

void Update()
{if (enemyTarget != null && Vector3.Distance(transform.position, enemyTarget.transform.position) <= attackRange){if (Time.time >= lastAttackTime + attackCooldown){Attack();lastAttackTime = Time.time;}}
}

Update 方法在每一帧被调用,用于检查 AI 角色的攻击条件。

  • if (enemyTarget != null && Vector3.Distance(transform.position, enemyTarget.transform.position) <= attackRange):

首先检查 enemyTarget 是否为 null,确保 AI 角色已经有目标。

使用 Vector3.Distance 方法计算 AI 角色与敌人之间的距离。如果距离小于或等于 attackRange,则表示敌人在攻击范围内。

  • if (Time.time >= lastAttackTime + attackCooldown): 检查当前时间是否大于等于上一次攻击时间加上冷却时间。如果满足条件,表示可以进行下一次攻击。

  • Attack();: 调用 Attack 方法,执行攻击动作。

  • lastAttackTime = Time.time;: 更新 lastAttackTime 为当前时间,以记录本次攻击的时间。

3.5 Attack 方法

void Attack()
{// 攻击行为,例如减去敌人生命值Debug.Log("Attacking the enemy!");
}
  • void Attack(): 定义一个私有方法,用于处理攻击行为。

  在方法中,通过 Debug.Log 输出信息,表示正在攻击敌人。这一行代码只是示例,实际游戏中可以替换为减少敌人生命值、播放攻击动画、音效等攻击逻辑。

3.6 攻击敌人总结

  这段代码实现了 AI 角色在一定范围内检测敌人并进行攻击的功能。它使用冷却机制来控制攻击的频率,确保 AI 不会在攻击之间过于频繁地进行攻击。这个脚本可以与敌人检测和移动脚本结合使用,以实现完整的 AI 行为模式。

4. 整合逻辑:

  将巡逻、发现敌人和攻击的逻辑整合在一个脚本或通过多个脚本管理,使得预制体能在巡逻、发现敌人、追逐敌人和攻击之间进行状态切换。你可以使用状态机来更清晰地管理这些状态的切换。

public enum AIState { Patrol, Chase, Attack }
public AIState currentState = AIState.Patrol;void Update()
{switch (currentState){case AIState.Patrol:Patrol();if (DetectEnemy())currentState = AIState.Chase;break;case AIState.Chase:ChaseEnemy();if (IsInAttackRange())currentState = AIState.Attack;break;case AIState.Attack:AttackEnemy();if (!IsInAttackRange())currentState = AIState.Chase;break;}
}

  这段 Unity 脚本代码实现了一个简单的 AI 状态机,用于控制 AI 角色在不同状态下的行为。这种设计模式可以帮助开发者管理复杂的角色行为,使其在不同情境下表现出不同的反应。以下是对代码逐行的解释:

4.1 定义枚举类型

public enum AIState { Patrol, Chase, Attack }

public enum AIState: 定义一个公共枚举类型 AIState,用于表示 AI 角色的不同状态。

  • 枚举包含三个状态:

  • Patrol: 巡逻状态。

  • Chase: 追逐状态。

  • Attack: 攻击状态。

4.2 声明当前状态

public AIState currentState = AIState.Patrol;

  public AIState currentState: 声明一个公共变量 currentState,用于存储 AI 角色的当前状态。

  • = AIState.Patrol: 初始化 currentState 为 Patrol,表示 AI 角色开始时处于巡逻状态。

4.3 Update 方法

void Update()
{switch (currentState){case AIState.Patrol:Patrol();if (DetectEnemy())currentState = AIState.Chase;break;case AIState.Chase:ChaseEnemy();if (IsInAttackRange())currentState = AIState.Attack;break;case AIState.Attack:AttackEnemy();if (!IsInAttackRange())currentState = AIState.Chase;break;}
}

Update 方法在每一帧被调用,用于检查并执行 AI 角色的行为。

  • switch (currentState): 根据 currentState 的值,执行不同的代码块。
4.3.1 巡逻状态
case AIState.Patrol:Patrol();if (DetectEnemy())currentState = AIState.Chase;break;
  • Patrol();: 调用 Patrol 方法,执行巡逻行为。

  • if (DetectEnemy()): 检测是否发现敌人,如果发现,切换状态为 Chase(追逐)。

4.3.2 追逐状态
case AIState.Chase:ChaseEnemy();if (IsInAttackRange())currentState = AIState.Attack;break;
  • ChaseEnemy();: 调用 ChaseEnemy 方法,执行追逐敌人的行为。

  • if (IsInAttackRange()): 检查是否在攻击范围内,如果是,切换状态为 Attack(攻击)。

4.3.3 攻击状态
case AIState.Attack:AttackEnemy();if (!IsInAttackRange())currentState = AIState.Chase;break;
  • AttackEnemy();: 调用 AttackEnemy 方法,执行攻击行为。

  • if (!IsInAttackRange()): 检查是否不再处于攻击范围内。如果不在攻击范围内,切换状态为 Chase(追逐),重新开始追逐敌人。

4.4 整合逻辑总结

  这段代码实现了一个简单的 AI 状态机,使得 AI 角色能够根据当前的状态执行相应的行为:巡逻、追逐或攻击敌人。通过使用状态机,AI 能够更灵活地管理行为,便于扩展和维护。具体的巡逻、追逐和攻击行为需要在其他方法(如 Patrol、ChaseEnemy 和 AttackEnemy)中实现。

总结

  通过使用Unity中的NavMeshAgent实现预制体的随机巡逻,结合Physics.OverlapSphere检测敌人并触发追击状态,以及在距离足够近时执行攻击动作,我们成功地实现了预制体的自动化行为。通过合理的状态切换逻辑管理预制体的行为,我们为游戏角色赋予了智能和自主性,使其能够在游戏世界中自主探索、发现敌人并进行攻击。这种综合应用不仅提升了游戏的交互性和挑战性,也为开发者们提供了实现自动化行为的有效方法,为游戏开发注入了新的活力和可能性。


  码文不易,本篇文章就介绍到这里,如果想要学习更多Java系列知识点击关注博主,博主带你零基础学习Java知识。与此同时,对于日常生活有困扰的朋友,欢迎阅读我的第四栏目:《国学周更—心性养成之路》,学习技术的同时,我们也注重了心性的养成。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/448829.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

wireshark 解密浏览器https数据包

一、导出浏览器证书有两种方法 1、在浏览器快捷方式追加启动参数&#xff1a; --ssl-key-log-file"d:\log\2.log" C:\Users\Administrator\AppData\Local\Google\Chrome\Application\chrome.exe --ssl-key-log-file"d:\log\2.log" 2、环境变量中新建用…

整理—计算机网络

目录 网络OSI模型和TCP/IP模型 应用层有哪些协议 HTTP报文有哪些部分 HTTP常用的状态码 Http 502和 504 的区别 HTTP层请求的类型有哪些&#xff1f; GET和POST的使用场景&#xff0c;有哪些区别&#xff1f; HTTP的长连接 HTTP默认的端口是什么&#xff1f; HTTP1.1怎…

win10卸载软件后发现“应用和功能”中还残留着软件卸载项怎么办?

win10卸载软件后发现“应用和功能”中还残留着软件卸载项怎么办&#xff1f; 1、方法一&#xff1a;2、方法二&#xff1a;3、在 Windows 中卸载或删除应用和程序 1、方法一&#xff1a; 点击控制面板界面中的程序下方的删除程序。 2、方法二&#xff1a; 1.winR打开运行窗…

JAVA——IO流

目录 1.概述 字节流&#xff1a; 2.分类 3.输入文件数据 1.创建对象 2.写出数据 3.释放资源 4.读出文件数据 1.创建对象 2.读取数据 3.释放资源 5.字符集 a.ASCII b.GBK c.Unicode 6.乱码 7.编码、解码常见方法 a.编码方法 1.默认方式编码 2.指定方式编码 …

4.7 大数据应用场景

文章目录 今天&#xff0c;我非常荣幸能与大家分享一个充满潜力和变革的主题——大数据的应用场景。在这个信息爆炸的时代&#xff0c;大数据已经成为推动各行各业发展的重要驱动力。接下来&#xff0c;我将带领大家探索大数据在不同行业中的神奇应用。 首先&#xff0c;让我们…

Wed前端入门——HTML、CSS

Wed前端入门——HTML、CSS 一般的页面有HTML、CSS以及JavaScript组成 HTML定义了页面的结构和内容&#xff0c;包括文本、图像、链接等等CSS用于定义页面的布局和样式JS用于添加交互性和动态功能作用 一、HTML 基本格式&#xff1a; <!-- 文档类型为HTML --> <!D…

大语言模型实战教程首发:基于深度学习的大规模自然语言处理模型LLM详解 -Shelly

我是Shelly&#xff0c;一个专注于输出AI工具和科技前沿内容的AI应用教练&#xff0c;体验过300款以上的AI应用工具。关注科技及大模型领域对社会的影响10年。关注我一起驾驭AI工具&#xff0c;拥抱AI时代的到来。 大模型的热度&#xff0c;实在是很高&#xff0c;诺奖也颁给了…

读书笔记《有效需求分析》业务场景梳理

1. 关键思考链 2. 执行流程 3. 执行细则 1&#xff09;最重要的是从业务流程到业务场景的梳理。 2&#xff09;主、变、支、管流程&#xff08;待解读&#xff09; 3&#xff09;排序业务场景&#xff08;待分析&#xff09; 4&#xff09;各分支判断是独立的且需要系统支持&a…

Vite创建Vue3项目以及Vue3相关基础知识

1.创建Vue3项目 1.运行创建项目命令 # 使用 npm npm create vitelatest2、填写项目名称 3、选择前端框架 4、选择语法类型 5、按提示运行代码 不出意外的话&#xff0c;运行之后应该会出现 下边这个页面 6.延伸学习&#xff1a;对比webpack和vite&#xff08;这个是面试必考…

JVM(HotSpot):直接内存及其使用建议

文章目录 一、什么是直接内存&#xff1f;二、特点三、使用案例四、直接内存的管理 一、什么是直接内存&#xff1f; Direct Memory&#xff1a;系统内存 普通IO&#xff0c;运行原理图 磁盘到系统内存&#xff0c;系统内存到jvm内存。 NIO&#xff0c;运行原理图 划分了一块…

Webpack 完整指南

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Webpack篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来webpack篇专栏内容:webpack介绍 目录 介绍 一、webpack 1.1、webpack是什么 1.2 webpack五个核心配置 1.…

FreeRTOS——中断管理

中断理论剖析 中断简介 中断是一种机制&#xff0c;用于处理高优先级的事件或故障。当一个中断事件发生时&#xff0c;单片机可以立即中断正在执行的程序&#xff0c;转而处理中断事件。这种机制可以提高系统的响应速度和实时性。 中断优先级分组设置 ARM Cortex-M使用了8位宽…

它思科技CTO聂玮奇:消除“AI幻觉”,搭建高可靠对话云平台丨数据猿专访

大数据产业创新服务媒体 ——聚焦数据 改变商业 近年来&#xff0c;大模型技术在全球范围内引起了广泛关注和应用热潮。 提到人工智能&#xff0c;很多人会想到它强大的运算能力和广泛的应用场景。如今&#xff0c;语言模型的发展如火如荼&#xff0c;但其中的“幻觉”问题却带…

川字结构布局/国字结构布局

1.串字结构布局 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><style&g…

S7-200 SMART 与 S7-1200 之间 TCP 通信— S7-200 SMART 作为服务器

TCP 协议通信 TCP 通信为面向连接的通信&#xff0c;需要双方都调用指令以建立连接及交换数据。S7-200 SMART 与 S7-1200 通过 TCP 通信&#xff0c;在 S7-1200 调用 T-block 指令 ( TCON, TDISCON, TSEND, TRCV ) &#xff0c;在 S7-200 SMART 调用 Open User Communication …

网络爬虫-数美滑块验证码

仅供研究学习使用。 今天带来的是数美滑块验证码的逆向 目标站 --> 传送门 解决此类验证码 首先要解决滑动距离的判定 无论是使用selenium还是使用协议的方式来破解 都绕不开滑动距离的识别 滑动距离可以参考以前我博客上的方式&#xff0c;或者找一找开源的一些算法&am…

Go基础知识:切片

数组 Go 数组的大小是固定的&#xff0c;其长度是其类型的一部分&#xff08;[4]int并且[5]int是不同的、不兼容的类型&#xff09; var a [10]intb : [2]string{"Penn", "Teller"} b : [...]string{"Penn", "Teller"}package maini…

2.4 STM32启动过程

目录 一,启动Flow 1.1 初始化MSP 1.2 初始化PC 1.3 设置堆栈大小 1.4初始化中断向量表 1.5 调用初始化函数(可选) 1.6 调用__main 二,Reset_Handler函数 一,启动Flow 下面是stm32在内部FLASH启动的启动建议流程图,在stm32复位到执行我们程序的main函数的过程中,…

深入理解Redis锁与Backoff重试机制在Go中的实现

文章目录 流程图Redis锁的深入实现Backoff重试策略的深入探讨结合Redis锁与Backoff策略的高级应用具体实现结论 在构建分布式系统时&#xff0c;确保数据的一致性和操作的原子性是至关重要的。Redis锁作为一种高效且广泛使用的分布式锁机制&#xff0c;能够帮助我们在多进程或分…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《计及多重不确定性和时间相关性的虚拟电厂参与碳-绿证协同交易优化调度》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…