《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 | 12.【基于YOLOv8深度学习的120种犬类检测与识别系统】 |
13.【基于YOLOv8深度学习的路面坑洞检测系统】 | 14.【基于YOLOv8深度学习的火焰烟雾检测系统】 |
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】 | 16.【基于YOLOv8深度学习的舰船目标分类检测系统】 |
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】 | 18.【基于YOLOv8深度学习的血细胞检测与计数系统】 |
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】 | 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】 |
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】 | 22.【基于YOLOv8深度学习的路面标志线检测与识别系统】 |
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】 | 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】 |
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】 | 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】 |
27.【基于YOLOv8深度学习的人脸面部表情识别系统】 | 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】 |
29.【基于YOLOv8深度学习的智能肺炎诊断系统】 | 30.【基于YOLOv8深度学习的葡萄簇目标检测系统】 |
31.【基于YOLOv8深度学习的100种中草药智能识别系统】 | 32.【基于YOLOv8深度学习的102种花卉智能识别系统】 |
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】 | 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】 |
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】 | 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】 |
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】 | 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】 |
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】 | 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】 |
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】 | 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】 |
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】 | 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】 |
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】 | 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】 |
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】 | 48.【基于深度学习的车辆检测追踪与流量计数系统】 |
49.【基于深度学习的行人检测追踪与双向流量计数系统】 | 50.【基于深度学习的反光衣检测与预警系统】 |
51.【基于深度学习的危险区域人员闯入检测与报警系统】 | 52.【基于深度学习的高密度人脸智能检测与统计系统】 |
53.【基于深度学习的CT扫描图像肾结石智能检测系统】 | 54.【基于深度学习的水果智能检测系统】 |
55.【基于深度学习的水果质量好坏智能检测系统】 | 56.【基于深度学习的蔬菜目标检测与识别系统】 |
57.【基于深度学习的非机动车驾驶员头盔检测系统】 | 58.【太基于深度学习的阳能电池板检测与分析系统】 |
59.【基于深度学习的工业螺栓螺母检测】 | 60.【基于深度学习的金属焊缝缺陷检测系统】 |
61.【基于深度学习的链条缺陷检测与识别系统】 | 62.【基于深度学习的交通信号灯检测识别】 |
63.【基于深度学习的草莓成熟度检测与识别系统】 | 64.【基于深度学习的水下海生物检测识别系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
基本功能演示
基于YOLO11/v10/v8/v5深度学习的安检X光危险品检测与识别系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
摘要:
安检X光危险品检测与识别系统在维护公共安全、预防恐怖袭击等方面具有重要意义。
该系统能够实时识别并定位危险品,有效提高安检效率,确保人民群众生命财产安全。本文基于YOLOv11/v10/v8/v5的深度学习框架
,通过8312
张安检X光危险品
的相关图片,训练了可进行安检X光危险品
目标检测的模型,可以分别检测5种类别:['枪','刀','钳子','剪刀','扳手']
,同时全面对比分析了YOLOv5n、YOLOv8n、YOLOv10n、YOLO11这4种模型在验证集上的评估性能表现
。最终基于训练好的模型制作了一款带UI界面的安检X光危险品检测与识别系统
,更便于进行功能的展示。该系统是基于python
与PyQT5
开发的,支持图片
、视频
以及摄像头
进行目标检测
,并保存检测结果
。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
文章目录
- 基本功能演示
- 研究背景
- 主要工作内容
- 一、软件核心功能介绍及效果演示
- 软件主要功能
- 界面参数设置说明
- 检测结果说明
- 主要功能说明
- (1)图片检测说明
- (2)视频检测说明
- (3)摄像头检测说明
- (4)保存图片与视频检测说明
- 二、YOLOv5/v8/v10/11简介
- YOLOv5简介
- YOLOv8简介
- YOLOv10介绍
- YOLO11简介
- 二、模型训练、评估与推理
- 1. 数据集准备与训练
- 2.模型训练
- 3. 训练结果评估
- 4. 使用模型进行推理
- 三、YOLOv5/v8/v10/11性能对比分析
- 1.常用评估参数介绍
- 2. 模型训练过程对比
- 3.各模型性能评估
- 4.模型总体性能对比
- 6.性能对比总结
- 四、可视化系统制作
- Pyqt5简介
- 1. 基本架构
- 2. 事件驱动编程
- 3. Qt 对象模型
- 4. 部件(Widgets)
- 5. 布局管理
- 6. 资源管理
- 7. 信号与槽机制
- 8. 跨平台性
- 系统制作
- 【获取方式】
点击跳转至文末《完整相关文件及源码》获取
研究背景
安检X光危险品检测与识别系统的重要性与意义
在于它为公共安全提供了强有力的技术支持,通过高效识别潜在威胁物品,它能够预防犯罪行为和恐怖袭击,保障人民的生命财产安全,同时提升安检工作的准确性和效率。
以下是安检X光危险品检测与识别系统的应用场景:
机场安全检查:系统可自动识别旅客行李中的枪支、刀具等危险品,确保航班安全。
火车站与地铁站安检:在人流密集的公共交通站点,系统有助于快速识别危险品,保障乘客安全。
快递物流安检:系统可以自动检测包裹中的违禁物品,防止危险品通过物流渠道传播。
政府机关和重要设施安检:在政府大楼、大使馆、核电站等重要场所,系统用于防止危险品带入,维护场所安全。
大型活动安检:如体育赛事、音乐会、展览等,系统可以提高安检速度,减少排队时间,同时确保活动安全。
商业楼宇安全检查:在写字楼、商场等商业环境中,系统可用于日常安检,预防安全事件发生。
总的来说,安检X光危险品检测与识别系统是一项关键的技术创新,它在多个关键领域发挥着不可或缺的作用。通过实时监测和精准识别,该系统不仅提高了安检的效率和准确性,还显著增强了公共安全保障能力,为社会的和谐稳定提供了有力支撑。
主要工作内容
本文的主要内容包括以下几个方面:
搜集与整理数据集:
搜集整理实际场景中安检X光危险品
的相关数据图片,并进行相应的数据处理,为模型训练提供训练数据集;训练模型:
基于整理的数据集,根据最前沿的YOLOv11/v10/v8/v5目标检测技术
训练目标检测模型,实现对需要检测的对象进行实时检测功能;模型性能对比:对训练出的4种模型在验证集上进行了充分的结果评估和对比分析
,主要目的是为了揭示每个模型在关键指标(如Precision、Recall、mAP50和mAP50-95等指标)上的优劣势
。这不仅帮助我们在实际应用中选择最适合特定需求的模型,还能够指导后续模型优化和调优工作,以期获得更高的检测准确率和速度。最终,通过这种系统化的对比和分析,我们能更好地理解模型的鲁棒性、泛化能力以及在不同类别上的检测表现,为开发更高效的计算机视觉系统提供坚实的基础。
可视化系统制作:
基于训练出的目标检测模型
,搭配Pyqt5
制作的UI界面,用python
开发了一款界面简洁的安检X光危险品检测与识别系统
,可支持图片、视频以及摄像头检测
,同时可以将图片或者视频检测结果进行保存
。其目的是为检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。
软件初始界面如下图所示:
检测结果界面如下:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可用于安检X光危险品
检测与识别,分为5个检测类别:['枪','刀','钳子','剪刀','扳手']
;
2. 支持图片、视频及摄像头
进行检测,同时支持图片的批量检测
;
3. 界面可实时显示目标位置
、目标总数
、置信度
、用时
等信息;
4. 支持图片
或者视频
的检测结果保存
;
5. 支持将图片的检测结果保存为csv文件
;
界面参数设置说明
置信度阈值:也就是目标检测时的conf参数,只有检测出的目标框置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,对检测框重叠比例iou大于该阈值的目标框进行过滤【也就是说假如两检测框iou大于该值的话,会过滤掉其中一个,该值越小,重叠框会越少】;
检测结果说明
显示标签名称与置信度:
表示是否在检测图片上标签名称与置信度,显示默认勾选,如果不勾选则不会在检测图片上显示标签名称与置信度;
总目标数
:表示画面中检测出的目标数目;
目标选择
:可选择单个目标进行位置信息、置信度查看。
目标位置
:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;
主要功能说明
功能视频演示见文章开头,以下是简要的操作描述。
(1)图片检测说明
点击打开图片
按钮,选择需要检测的图片,或者点击打开文件夹
按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存
按钮,会对检测结果进行保存,存储路径为:save_data
目录下,同时会将图片检测信息保存csv文件
。
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。
(2)视频检测说明
点击视频
按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
(3)摄像头检测说明
点击打开摄像头
按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。
(4)保存图片与视频检测说明
点击保存
按钮后,会将当前选择的图片【含批量图片】或者视频
的检测结果进行保存,对于图片图片检测还会保存检测结果为csv文件
,方便进行查看与后续使用。检测的图片与视频结果会存储在save_data
目录下。
【注:暂不支持视频文件的检测结果保存为csv文件格式。】
保存的检测结果文件如下:
图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置
。
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。
二、YOLOv5/v8/v10/11简介
YOLO(You Only Look Once)是一种流行的计算机视觉算法,用于实现实时对象检测。它由Joseph Redmon等人首次在2015年提出,并随后进行了多次改进。YOLO的核心思想是将整个图像划分为一个固定数量的格子(grid cells),然后在每个格子内同时预测多个边界框(bounding boxes)和类别概率。
YOLOv5、YOLOv8、YOLOv10是YOLO系列中最经典且常用的3个系列版本,他们均是基于先前YOLO版本在目标检测任务上的成功,对模型结构进行不断地优化改进,从而不断提升了性能和灵活性,在精度和速度方面都具有尖端性能。下面对这3个系列的模型进行简要介绍。
YOLOv5简介
源码地址:https://github.com/ultralytics/yolov5
YOLOv5算法是目前应用最广泛的目标检测算法之一,它基于深度学习技术,在卷积神经网络的基础上加入了特征金字塔网络和SPP结构等模块,从而实现了高精度和快速检测速度的平衡。
基本网络结构如下:
YOLOV5有YOLOv5n, YOLOv5s、YOLOv5m、YOLOv51、YOLOv5x五个版本。这几个模型的结构基本一样,不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数。对应模型的深度与宽度因子,随着因子值的增大,模型不断加深、加宽。
YOLOv5不同模型尺寸信息:
YOLOv5提供了5种不同大小的模型尺寸信息,以及在coco数据集上的性能表现如下:
模型 | 尺寸 (像素) | mAPval 50-95 | 速度 CPU ONNX (毫秒) | 速度 A100 TensorRT (毫秒) | params (M) | FLOPs (B) |
---|---|---|---|---|---|---|
yolov5nu.pt | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
yolov5su.pt | 640 | 43.0 | 120.7 | 1.27 | 9.1 | 24.0 |
yolov5mu.pt | 640 | 49.0 | 233.9 | 1.86 | 25.1 | 64.2 |
yolov5lu.pt | 640 | 52.2 | 408.4 | 2.50 | 53.2 | 135.0 |
yolov5xu.pt | 640 | 53.2 | 763.2 | 3.81 | 97.2 | 246.4 |
YOLOv5算法创新点:
- Anchor-free设计:传统目标检测算法中需要先确定物体位置并给出候选框,但yolov5采用了无锚设计方式,直接预测物体的位置和大小,从而避免了候选框对检测性能的影响。
- 多尺度检测:yolov5算法可以精确检测到不同尺度、各种形状和姿态的目标,具有很好的适应性。
- 目标定位精确:yolov5通过导出中心点坐标来实现目标的精准定位,并且在分类和回归两个方面都进行优化,从而提高了目标检测精度。
- 检测速度快:采用高效计算方法,并利用GPU等硬件加速技术,使得yolov5算法在保证高精度的同时,具有非常快的检测速度。
YOLOv8简介
源码地址:https://github.com/ultralytics/ultralytics
Yolov8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。
YOLOv8网络结构如下:
YOLOv8创新点:
Yolov8主要借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,其本身创新点不多,偏重在工程实践上,具体创新如下:
- 提供了一个全新的SOTA模型(包括P5 640和P6 1280分辨率的目标检测网络和基于YOLACT的实例分割模型)。并且,基于缩放系数提供了N/S/M/L/X不同尺度的模型,以满足不同部署平台和应用场景的需求。
- Backbone:同样借鉴了CSP模块思想,不过将Yolov5中的C3模块替换成了C2f模块,实现了进一步轻量化,同时沿用Yolov5中的SPPF模块,并对不同尺度的模型进行精心微调,不再是无脑式一套参数用于所有模型,大幅提升了模型性能。
- Neck:继续使用PAN的思想,但是通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8移除了1*1降采样层。
- Head部分相比YOLOv5改动较大,Yolov8换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离,同时也从Anchor-Based换成了Anchor-Free。
- Loss计算:使用VFL Loss作为分类损失(实际训练中使用BCE Loss);使用DFL Loss+CIOU Loss作为回归损失。
- 标签分配:Yolov8抛弃了以往的IoU分配或者单边比例的分配方式,而是采用Task-Aligned Assigner正负样本分配策略。
YOLOv8不同模型尺寸信息:
YOLOv8提供了5种不同大小的模型尺寸信息,详情如下:
Model | size (pixels) | mAPval 50-95 | params (M) | FLOPs (B) |
---|---|---|---|---|
YOLOv8n | 640 | 37.3 | 3.2 | 8.7 |
YOLOv8s | 640 | 44.9 | 11.2 | 28.6 |
YOLOv8m | 640 | 50.2 | 25.9 | 78.9 |
YOLOv8l | 640 | 52.9 | 43.7 | 165.2 |
YOLOv8x | 640 | 53.9 | 68.2 | 257.8 |
一般来说,选择模型大小的原则如下:
数据集小(几百张图片):使用yolov8n或yolov8s。过大模型会过拟合。
数据集中等(几千张图片):yolov8s或yolov8m。能获得较高精度,不易过拟合。
数据集大(几万张图片):yolov8l或yolov8x。模型容量大,充分拟合大数据量,能发挥模型效果。
超大数据集(几十万张以上):首选yolov8x。超大模型才能处理海量数据并取得最优效果。
YOLOv10介绍
论文地址:https://arxiv.org/abs/2405.14458
源码地址:https://github.com/THU-MIG/yolov10
YOLOv10 的架构建立在以前 YOLO 模型的优势之上,通过消除非最大抑制 (NMS) 和优化各种模型组件, 实现了最先进的性能,并显著降低了计算开销。
模型网络结构由以下组件组成:
主干网:YOLOv10 中的主干网负责特征提取,使用增强版的 CSPNet(Cross Stage Partial Network)来改善梯度流并减少计算冗余。
颈部:颈部被设计成聚合来自不同尺度的特征,并将它们传递到头部。它包括 PAN(路径聚合网络)层,用于有效的多尺度特征融合。
一对多头:在训练过程中为每个对象生成多个预测,以提供丰富的监督信号,提高学习准确性。
一对一头:在推理过程中为每个对象生成一个最佳预测,消除对 NMS 的需求,从而减少延迟并提高效率。
YOLOv10创新点如下
无 NMS 训练
:利用一致的双重分配来消除对 NMS 的需求,从而减少推理延迟。
整体模型设计
:从效率和精度两个角度对各种组件进行全面优化,包括轻量级分类头、空间通道解耦下采样和秩引导块设计。
增强的模型功能
:整合大核卷积和部分自注意力模块,可在不增加大量计算成本的情况下提高性能。
YOLOv10不同模型尺寸信息:
YOLOv10 提供6种不同的型号规模模型,以满足不同的应用需求:
Model | Input Size | APval | params (M) | FLOPs (G) |
---|---|---|---|---|
YOLOv10-N | 640 | 38.5 | 2.7 | 6.7 |
YOLOv10-S | 640 | 46.3 | 7.2 | 21.6 |
YOLOv10-M | 640 | 51.1 | 15.4 | 59.1 |
YOLOv10-B | 640 | 52.5 | 19.1 | 92.0 |
YOLOv10-L | 640 | 53.2 | 24.4 | 120.3 |
YOLOv10-X | 640 | 54.4 | 29.5 | 160.4 |
YOLOv10-N:Nano 版本,适用于资源极度受限的环境。
YOLOv10-S:平衡速度和精度的小型版本。
YOLOv10-M:通用的中型版本。
YOLOv10-B:平衡版本,宽度增加,精度更高。
YOLOv10-L:大版本,以增加计算资源为代价,实现更高的精度。
YOLOv10-X:超大版本,可实现最大的精度和性能。
YOLO11简介
源码地址:https://github.com/ultralytics/ultralytics
Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
YOLO11创新点如下:
YOLO 11主要改进包括:
增强的特征提取
:YOLO 11采用了改进的骨干和颈部架构,增强了特征提取功能,以实现更精确的目标检测。
优化的效率和速度
:优化的架构设计和优化的训练管道提供更快的处理速度,同时保持准确性和性能之间的平衡。
更高的精度,更少的参数
:YOLO11m在COCO数据集上实现了更高的平均精度(mAP),参数比YOLOv8m少22%,使其在不影响精度的情况下提高了计算效率。
跨环境的适应性
:YOLO 11可以部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统。
广泛的支持任务
:YOLO 11支持各种计算机视觉任务,如对象检测、实例分割、图像分类、姿态估计和面向对象检测(OBB)。
YOLO11不同模型尺寸信息:
YOLO11 提供5种不同的型号规模模型,以满足不同的应用需求:
Model | size (pixels) | mAPval 50-95 | Speed CPU ONNX (ms) | Speed T4 TensorRT10 (ms) | params (M) | FLOPs (B) |
---|---|---|---|---|---|---|
YOLO11n | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
YOLO11s | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
YOLO11m | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
YOLO11l | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
YOLO11x | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
二、模型训练、评估与推理
本文主要基于YOLOv5n、YOLOv8n、YOLOv10n
、YOLO11n
这4种模型进行模型的训练,训练完成后对4种模型在验证集上的表现进行全面的性能评估及对比分析。模型训练和评估流程基本一致,包括:数据集准备、模型训练、模型评估。
下面主要以最新的YOLO11为例进行训练过程的详细讲解,YOLOv5、YOLOv8与YOLOv10的训练过程类似。
1. 数据集准备与训练
通过网络上搜集关于实际场景中安检X光危险品
的相关图片,并使用Labelimg标注工具对每张图片进行标注,分5个检测类别
,分别是['枪','刀','钳子','剪刀','扳手']
。
最终数据集一共包含8312张图片
,其中训练集包含5819张图片
,验证集包含1662张图片
,测试集包含831张图片
。
部分图像及标注如下图所示:
数据集各类别数目分布情况如下:
2.模型训练
准备好数据集后,将图片数据以如下格式放置在项目目录中。在项目目录中新建datasets
目录,同时将检测的图片分为训练集与验证集放入Data
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
train: D:\2MyCVProgram\2DetectProgram\XRayDangerousGoodsDetection_v11\datasets\Data\train
val: D:\2MyCVProgram\2DetectProgram\XRayDangerousGoodsDetection_v11\datasets\Data\valid
test: D:\2MyCVProgram\2DetectProgram\XRayDangerousGoodsDetection_v11\datasets\Data\testnc: 5
names: ['Gun', 'Knife', 'Pliers', 'Scissors', 'Wrench']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,optimizer
设定的优化器为SGD,训练代码如下:
#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/11/yolo11.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolo11n.pt'if __name__ == '__main__':#加载预训练模型model = YOLO(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150, # 训练轮数batch=4, # batch大小name='train_v11', # 保存结果的文件夹名称optimizer='SGD') # 优化器
模型常用训练超参数参数说明:
YOLO11 模型的训练设置包括训练过程中使用的各种超参数和配置
。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器、损失函数和训练数据集组成的选择也会影响训练过程。对这些设置进行仔细的调整和实验对于优化性能至关重要。
以下是一些常用的模型训练参数和说明:
参数名 | 默认值 | 说明 |
---|---|---|
model | None | 指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。 |
data | None | 数据集配置文件的路径(例如 coco8.yaml ).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。 |
epochs | 100 | 训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。 |
patience | 100 | 在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。 |
batch | 16 | 批量大小,有三种模式:设置为整数(例如,’ Batch =16 ‘), 60% GPU内存利用率的自动模式(’ Batch =-1 ‘),或指定利用率分数的自动模式(’ Batch =0.70 ')。 |
imgsz | 640 | 用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。 |
device | None | 指定用于训练的计算设备:单个 GPU (device=0 )、多个 GPU (device=0,1 )、CPU (device=cpu ),或苹果芯片的 MPS (device=mps ). |
workers | 8 | 加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。 |
name | None | 训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。 |
pretrained | True | 决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。 |
optimizer | 'auto' | 为训练模型选择优化器。选项包括 SGD , Adam , AdamW , NAdam , RAdam , RMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性 |
lr0 | 0.01 | 初始学习率(即 SGD=1E-2 , Adam=1E-3 ) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。 |
lrf | 0.01 | 最终学习率占初始学习率的百分比 = (lr0 * lrf ),与调度程序结合使用,随着时间的推移调整学习率。 |
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5
值为0.906
,结果还是很不错的。
模型验证集上的评估结果如下:
4. 使用模型进行推理
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/train/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/P00009_jpg.rf.6d9f67060235237afa8ffea5b1d46088.jpg"# 加载预训练模型
model = YOLO(path, task='detect')# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
更多检测结果示例如下:
三、YOLOv5/v8/v10/11性能对比分析
本文在介绍的数据集上分别训练了YOLOv5n、YOLOv8n、YOLOv10n
这3种模型用于对比分析,训练轮数为150个epoch
。主要分析这3种模型的训练结果在Precision(精确度)
、Recall(召回率)
、mAP50
、mAP50-95
、F1-score
等性能指标上的表现,以选出更适合本数据集的最优模型。
3种模型基本信息如下:
Model | size (pixels) | mAPval 50-95 | params (M) | FLOPs (B) |
---|---|---|---|---|
YOLOv5n | 640 | 34.3 | 2.6 | 7.7 |
YOLOv8n | 640 | 37.3 | 3.2 | 8.7 |
YOLOv10n | 640 | 38.5 | 2.7 | 6.7 |
FlOPs(floating point operations):浮点运算次数,用于衡量算法/模型的复杂度。
params (M):表示模型的参数量
这3种模型都是各个YOLO系列种最小尺寸结构的模型,在模型参数与计算量上都相差不大,属于同一个级别的模型,因此能够进行横向的对比分析。
1.常用评估参数介绍
-
Precision(精确度):
-
精确度是针对预测结果的准确性进行衡量的一个指标,它定义为预测为正例(即预测为目标存在)中真正正例的比例。
-
公式:
-
其中,TP(True Positives)是正确预测为正例的数量,FP(False Positives)是错误预测为正例的数量。
-
-
Recall(召回率):
-
召回率衡量的是模型检测到所有实际正例的能力,即预测为正例的样本占所有实际正例的比例。
-
公式:
-
其中,FN(False Negatives)是错误预测为负例(即漏检)的数量。
-
-
mAP50(平均精度,Mean Average Precision at Intersection over Union 0.5):
- mAP50是目标检测中一个非常重要的指标,它衡量的是模型在IoU(交并比)阈值为0.5时的平均精度。IoU是一个衡量预测边界框与真实边界框重叠程度的指标。
- mAP50通常在多个类别上计算,然后取平均值,得到整体的平均精度。
- 计算方法:对于每个类别,首先计算在IoU阈值为0.5时的精度-召回率曲线(Precision-Recall Curve),然后计算曲线下的面积(AUC),最后对所有类别的AUC取平均值。
这三个指标共同提供了对目标检测模型性能的全面评估:
- 精确度(Box_P)关注预测的准确性,即减少误检(FP)。
- 召回率(Box_R)关注检测的完整性,即减少漏检(FN)。
- mAP50提供了一个平衡精确度和召回率的指标,同时考虑了模型在不同类别上的表现。
在实际应用中,根据具体需求,可能会更侧重于精确度或召回率,例如在需要减少误报的场合,可能会更重视精确度;而在需要确保所有目标都被检测到的场合,可能会更重视召回率。mAP50作为一个综合指标,能够帮助研究者和开发者平衡这两个方面,选择最合适的模型。
- mAP50-95:
- 这是衡量目标检测模型在不同IoU阈值下性能的指标。IoU是预测的边界框与真实边界框之间的重叠程度,mAP50-95计算了从IoU为0.5到0.95的范围内,模型的平均精度。
- 精度-召回率曲线在不同的IoU阈值上绘制,然后计算曲线下的面积(AUC),最后取这些AUC的平均值,得到mAP50-95。
- 这个指标反映了模型在不同匹配严格度下的性能,对于评估模型在实际应用中的泛化能力非常重要。
- F1分数:
-
这是精确度和召回率的调和平均数,能够平衡两者的影响,是一个综合考虑精确度和召回率的指标。
-
公式:
-
当精确度和召回率差距较大时,F1分数能够提供一个更全面的模型性能评估。
-
2. 模型训练过程对比
YOLOv5n、YOLOv8n、YOLOv10n、YOLO11n
这3种模型的训练过程损失曲线与性能曲线如下。
训练过程的损失曲线对比如下:
训练过程中的精确度(Precision)、召回率(Recall)、平均精确度(Mean Average Precision, mAP)等参数的对比如下:
直观的从曲线上看,4种模型在模型精度上看,差别不是很大。下面对具体的性能数值进行详细分析。
3.各模型性能评估
在YOLOv5n、YOLOv8n、YOLOv10n、YOLO11n
这3种模型训练完成后,我们可以通过验证集对各个模型分别进行性能评估。
YOLOv5n模型在验证集上的性能评估结果如下:
表格列说明:
Class:表示模型的检测类别名称;
Images:表示验证集图片数目;
Instances:表示在所有图片中目标数;
P:表示精确度Precison;
R:表示召回率Recall;
mAP50:表示IoU(交并比)阈值为0.5时的平均精度。
mAP50-95:表示从IoU为0.5到0.95的范围内【间隔0.05】,模型的平均精度。
表格行说明:
第一行all,除Instances是
所有类别目标数之和
,其他参数表示所有类别对应列参数的平均值
;
其他行,表示每一个类别对应参数的值。
YOLOv8n模型在验证集上的性能评估结果如下:
YOLOv10n模型在验证集上的性能评估结果如下:
YOLO11模型在验证集上的性能评估结果如下:
4.模型总体性能对比
下面我们从总体的平均指标上对YOLOv5n、YOLOv8n、YOLOv10n、YOLO11
这3种模型进行对比分析。
下表是YOLOv5n、YOLOv8n、YOLOv10n、YOLO11
这4不同模型目标检测结果的整体性能平均指标对比情况:
Model | Precision | Recall | mAP50 | mAP50-95 | F1-score |
---|---|---|---|---|---|
YOLOv5n | 0.926 | 0.831 | 0.908 | 0.662 | 0.876 |
YOLOv8n | 0.926 | 0.852 | 0.914 | 0.671 | 0.887 |
YOLOv10n | 0.902 | 0.833 | 0.901 | 0.671 | 0.866 |
YOLO11 | 0.914 | 0.837 | 0.908 | 0.672 | 0.874 |
为了方便更加直观的查看与对比各个结果,同样我们将表格绘制成图表的形式进行分析。
当然,我们除了从整体的平均指标上对比之外,也可以单独对比相同类别在不同模型上的指标表现。以查看不同模型在各个类别上的优劣势。
6.性能对比总结
整体来看,几个模型性能相差并不是特别大。YOLOv8n相较于其他3个版本,在此数据集上的性能表现略优。
四、可视化系统制作
基于上述训练出的目标检测模型,为了给此检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。博主基于Pyqt5开发了一个可视化的系统界面,通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。【系统详细展示见第一部分内容】
Pyqt5简介
PyQt5 是用于 Python 编程语言的一个绑定库,提供了对 Qt 应用程序框架的访问。它常用于开发跨平台的桌面应用程序,具有丰富的功能和广泛的控件支持。PyQt5 提供了一个功能强大且灵活的框架,可以帮助 Python 开发者迅速构建复杂的桌面应用程序。其事件驱动编程模型、丰富的控件和布局管理、强大的信号与槽机制以及跨平台能力,使得 PyQt5 成为开发桌面应用程序的理想选择。
下面对PyQt5 的基本原理进行详细介绍:
1. 基本架构
PyQt5 是 Python 和 Qt 库之间的一层接口,Python 程序员可以通过 PyQt5 访问 Qt 库的所有功能。Qt 是由 C++ 编写的跨平台软件开发框架,PyQt5 使用 SIP(一个用于创建 Python 与 C/C++ 语言之间的绑定工具)将这些功能导出到 Python。
2. 事件驱动编程
PyQt5 基于事件驱动编程模型,主要通过信号(signals)和槽(slots)机制实现用户与应用程序之间的交互。当用户与 GUI 进行交互(如点击按钮、调整滑块等)时,会触发信号,这些信号可以连接到槽函数或方法,以执行特定操作。
from PyQt5.QtWidgets import QApplication, QPushButtondef on_click():print("Button clicked!")app = QApplication([])
button = QPushButton('Click Me')
button.clicked.connect(on_click)
button.show()
app.exec_()
3. Qt 对象模型
PyQt5 的核心是 Qt 对象模型,所有的控件和窗口部件都是从 QObject
类派生而来的。它们拥有复杂的父子关系,确保父对象在销毁时自动销毁所有子对象,避免内存泄漏。
4. 部件(Widgets)
PyQt5 提供了丰富的内置部件,如按钮、标签、文本框、表格、树、标签页等,几乎涵盖了所有常见的 GUI 控件。这些部件可以直接使用,也可以通过继承进行自定义。
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayoutapp = QApplication([])window = QWidget()
layout = QVBoxLayout()label = QLabel('Hello, PyQt5!')
layout.addWidget(label)window.setLayout(layout)
window.show()
app.exec_()
5. 布局管理
PyQt5 提供了强大的布局管理功能,可以通过 QLayout
和其子类(如 QHBoxLayout
, QVBoxLayout
, QGridLayout
)来控制部件在窗口内的摆放方式。这使得界面的设计变得灵活且易于维护。
6. 资源管理
PyQt5 支持资源文件管理,可以将图像、图标、样式表等资源打包进应用程序中。资源文件通常以 .qrc
格式存储,并通过资源管理器集成到应用程序中。
7. 信号与槽机制
信号与槽机制是 Qt 框架的核心特性之一,它允许对象之间进行松耦合通信。通过信号可以触发槽函数来处理各种事件,使代码逻辑更加清晰和模块化。
8. 跨平台性
PyQt5 是跨平台的,支持 Windows、Mac 和 Linux 等操作系统,编写一次代码即可运行在多个平台上。
系统制作
博主基于Pyqt5框架开发了此款安检X光危险品检测与识别系统
,即文中第一部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
。
通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。这不仅提升了系统的可用性和用户体验,还使得检测过程更加直观透明,便于结果的实时观察和分析。此外,GUI还可以集成其他功能,如检测结果的保存与导出、检测参数的调整,从而为用户提供一个全面、综合的检测工作环境,促进智能检测技术的广泛应用。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、训练好的模型、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
【获取方式】
关注下方名片G-Z-H:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式
本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
注意:该代码基于Python3.9开发,运行界面的主程序为
MainProgram.py
,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt
配置软件运行所需环境。
关注下方名片GZH:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式