【笔记】【YOLOv10图像识别】自动识别图片、视频、摄像头、电脑桌面中的花朵学习踩坑

(一)启动

创建环境python3.9

打开此环境终端

(后面的语句操作几乎都在这个终端执行)

输入up主提供的语句:pip install -r requirements.txt

1.下载pytorch网络连接超时

 pytorch网址:

Start Locally | PyTorch

把pip后面的3去掉

在上面的网址中找到对应的版本用那个下载语句 但是我开着魔法都下载失败了说是

网络连接超时问题

于是使用清华的镜像再次下载pytorch 飞速成功

pip install torch torchvision torchaudio -f https://pypi.tuna.tsinghua.edu.cn/simple
 

2.NVIDIA缺失

安装 cuda12.4

配置环境变量:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin添加到环境变量的PATH中

完成这步之后

输入nvida-smi后出现问题 大概就是我的C:\Program Files\NVIDIA Corporation这个路径下面没有NVSMI的文件夹

查询后解决: 感谢Windows NVIDIA Corporation下没有NVSMI文件夹解决方法-CSDN博客

链接:百度网盘 请输入提取码
提取码:wy6l

将NVSMI.zip解压后 放到C:\Program Files\NVIDIA Corporation\

然后再次回到你环境终端 输入nvdia-smi 发现这个电脑没有显卡

无所谓 让我们继续下一步

3.python app.py报错缺乏gradio

Traceback (most recent call last): File "D:\ai训练\yolov10\yolov10\app.py", line 1, in <module> import gradio as gr ModuleNotFoundError: No module named 'gradio'

那下载一个就是

再次 输入语句运行发现报错:

Exception in ASGI application Traceback (most recent call last): File "C:\ProgramData\anaconda3\envs\yolov10\lib\site-packages\pydantic\type_adapter.py", line 270, in _init_core_attrs self._core_schema = _getattr_no_parents(self._type, '__pydantic_core_schema__') File "C:\ProgramData\anaconda3\envs\yolov10\lib\site-packages\pydantic\type_adapter.py", line 112, in _getattr_no_parents raise AttributeError(attribute) AttributeError: __pydantic_core_schema_

ok啊依赖冲突了 降低版本

pip install pydantic==1.10.9 

解决 这里的问题就ok了 

4.运行了之后发现网页内容不是教程给的文件夹的内容

在yolov10中找到app.py

打开并且来到最后一行

app.launch(server_port=7861)

更改端口号为7861

原因:此前按照教程用默认端口7860自己先跑了一遍官方的 

5.第4的解决并不稳定

解决:

在yolov10和bin目录同级新建一个models

把文件夹中的所有.pt文件都放进去

然后打开app.py

import gradio as gr
import cv2
import tempfile
from ultralytics import YOLOv10
import os

# Set no_proxy environment variable for localhost
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"

# Directory where your models are store
MODEL_DIR = 'D:/ai_train/yolov10/yolov10/models/'

# Load all available models from the directory
def get_model_list():
    return [f for f in os.listdir(MODEL_DIR) if f.endswith('.pt')]

def yolov10_inference(image, video, model_id, image_size, conf_threshold):
    model_path = os.path.join(MODEL_DIR, model_id)  # Get the full model path
    model = YOLOv10(model_path)  # Load the selected model

    if image:
        results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
        annotated_image = results[0].plot()
        return annotated_image[:, :, ::-1], None
    else:
        video_path = tempfile.mktemp(suffix=".webm")
        with open(video_path, "wb") as f:
            with open(video, "rb") as g:
                f.write(g.read())

        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        output_video_path = tempfile.mktemp(suffix=".webm")
        out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
            annotated_frame = results[0].plot()
            out.write(annotated_frame)

        cap.release()
        out.release()

        return None, output_video_path


def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold):
    annotated_image, _ = yolov10_inference(image, None, model_path, image_size, conf_threshold)
    return annotated_image


def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil", label="Image", visible=True)
                video = gr.Video(label="Video", visible=False)
                input_type = gr.Radio(
                    choices=["Image", "Video"],
                    value="Image",
                    label="Input Type",
                )
                
                # Dynamically load models from the directory
                model_id = gr.Dropdown(
                    label="Model",
                    choices=get_model_list(),  # Dynamically fetch the model list
                    value=get_model_list()[0],  # Set a default model
                )
                
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=320,
                    maximum=1280,
                    step=32,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.25,
                )
                yolov10_infer = gr.Button(value="Detect Objects")

            with gr.Column():
                output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
                output_video = gr.Video(label="Annotated Video", visible=False)

        def update_visibility(input_type):
            image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
            video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
            output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible(False))
            output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)

            return image, video, output_image, output_video

        input_type.change(
            fn=update_visibility,
            inputs=[input_type],
            outputs=[image, video, output_image, output_video],
        )

        def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
            if input_type == "Image":
                return yolov10_inference(image, None, model_id, image_size, conf_threshold)
            else:
                return yolov10_inference(None, video, model_id, image_size, conf_threshold)


        yolov10_infer.click(
            fn=run_inference,
            inputs=[image, video, model_id, image_size, conf_threshold, input_type],
            outputs=[output_image, output_video],
        )

        gr.Examples(
            examples=[
                [
                    "ultralytics/assets/bus.jpg",
                    get_model_list()[0],
                    640,
                    0.25,
                ],
                [
                    "ultralytics/assets/zidane.jpg",
                    get_model_list()[0],
                    640,
                    0.25,
                ],
            ],
            fn=yolov10_inference_for_examples,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
            ],
            outputs=[output_image],
            cache_examples='lazy',
        )

gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv10: Real-Time End-to-End Object Detection
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            app()
if __name__ == '__main__':
    gradio_app.launch(server_port=7861)
 

重点是第十一行

把这个路径更改为你的models的文件夹路劲

然后回到py3.9的运行终端再次输入 app..py打开网页

解决了 一切正常 let`s 学习

(二)之后的错误

1.启动摄像头报错

(yolov10) D:\ai_train\yolov10\yolov10>python yolov10-camera.py Traceback (most recent call last): File "D:\ai_train\yolov10\yolov10\yolov10-camera.py", line 2, in <module> import supervision as sv ModuleNotFoundError: No module named 'supervision'

缺少 那就安装

pip install supervision

然后 再次启动

python yolov10-camera.py

2.桌面识别图片时报错

python yolov10-paint2.py SupervisionWarnings: BoundingBoxAnnotator is deprecated: `BoundingBoxAnnotator` is deprecated and has been renamed to `BoxAnnotator`. `BoundingBoxAnnotator` will be removed in supervision-0.26.0. 找不到窗口: th(1).jpg 找不到窗口: th(1).jpg 找不到窗口: th(1).jpg

解决;

直接复制图片窗口名字到yolov10-paint2.py第十七行 我就是手打然后报错了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/452075.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

centos系列图形化 VNC server配置,及VNC viewer连接,2024年亲测有效

centos系列图形化 VNC server配置&#xff0c;及VNC viewer连接 0.VNC服务介绍 VNC英文全称为Virtual Network Computing&#xff0c;可以位操作系统提供图形接口连接方式&#xff0c;简单的来说就是一款桌面共享应用&#xff0c;类似于qq的远程连接。该服务是基于C/S模型的。…

【STM32-HAL库】STM32F系列新建工程并点灯教程(小白向)

本帖是STM32HAL库系列新建工程系列合集 stm32-HAL库cubeMX新建工程教程&#xff08;以F103C8T6为例&#xff09;https://blog.csdn.net/qq_39150957/article/details/136637881?fromshareblogdetail&sharetypeblogdetail&sharerId136637881&sharereferPC&sha…

uniapp使用html2canvas时,页面内的image元素模糊

不废话很简单只需要将image改成img就行 改之前 改之后 原因可能是因为uniapp里面的image标签做了某种处理

[已解决]DockerTarBuilder永久解决镜像docker拉取异常问题

前阵子发现阿里云的docker加速镜像失效了&#xff08;甚至连nginx都拉取不了&#xff09;&#xff0c;重新换了并且加多了网络上比较常用的dokcer加速源&#xff0c;可以解决一部分问题&#xff0c;但仍然有一些镜像的某个版本或一些比较冷的镜像就是拉取不了&#xff0c;原因未…

Spring Security 基础配置详解(附Demo)

目录 前言1. 基本知识2. Demo3. 实战 前言 基本的Java知识推荐阅读&#xff1a; java框架 零基础从入门到精通的学习路线 附开源项目面经等&#xff08;超全&#xff09;【Java项目】实战CRUD的功能整理&#xff08;持续更新&#xff09; 1. 基本知识 HttpSecurity 是 Spri…

51单片机快速入门之 LCD1602 液晶显示屏2024/10/19

51单片机快速入门之 LCD1602 液晶显示屏 Proteus 电路图 : 74HC595 拓展电路可以不用,给 p0-p17 添加上拉电阻也可以!,我这里是方便读取和节省电阻线路 (因为之前不知道 在没有明确循环的情况下&#xff0c;Keil编译器可能会在main()中自动添加类似以下的汇编代码&#xff1a…

ChatGPT Plus 升级全攻略

ChatGPT Plus 升级全攻略 最近有很多人想知道如何顺利升级到 ChatGPT Plus。这里有详细步骤,确保你不会错过任何环节。 第一步:登录 OpenAI 首先,你需要去 chat.openai.com。 然后,点击“登录”,输入你的邮箱和密码。 接下来,确保你输入的信息是正确的。 第二步:点击“升级…

HttpURLConnection构造请求体传文件

HttpURLConnection构造请求体传文件 在Java中&#xff0c;使用HttpURLConnection构造请求体传输文件&#xff0c;你需要做以下几步&#xff1a; 1、创建URL对象指向你想要请求的资源。 2、通过URL打开连接&#xff0c;转换为HttpURLConnection实例。 3、设置请求方法为POST。 …

软件测试工程师:如何写出好的测试用例?

软件测试用例(Test Case)是软件测试过程中的一种详细文档或描述&#xff0c;用于描述在特定条件下&#xff0c;对软件系统或组件进行测试的步骤、输入数据、预期输出和预期行为。编写高质量的测试用例是确保软件质量的关键步骤之一。以下是一些编写优秀测试用例的建议&#xff…

StarRocks产品简介

StarRocks概念 StarRocks 是新一代极速全场景 MPP (Massively Parallel Processing) 数据库。StarRocks 的愿景是能够让用户的数据分析变得更加简单和敏捷。用户无需经过复杂的预处理&#xff0c;就可以用 StarRocks 来支持多种数据分析场景的极速分析。 StarRocks架构 Star…

使用Arcgis批量自动出图

操作方法如下&#xff1a; 1 2 3 4 5 6 7 设置好选项&#xff0c;开始打印。 8 生成pdf。 第一步&#xff1a;shp放到数据库中&#xff0c;标注转注记&#xff0c;然后编辑注记&#xff0c;符号样式设置好。准备出图&#xff1a;&#xff08;转注记时候尽量压盖监测等选最…

MXO44-2410数字示波器

MXO44-2410数字示波器 R&SMXO 4 系列是新一代示波器的首款产品&#xff0c;在性能和价值方面均表现出色。这些仪器提供十年一遇的工程突破&#xff0c;以加速洞察。 它们具有世界上最快的 450 万波形/秒的实时更新速率&#xff0c;这意味着工程师可以看到比任何其他仪器更…

李宏毅机器学习2022-HW7-BERT-Question Answering

文章目录 TaskBaselineMediumStrongBoss Code Link Task HW7的任务是通过BERT完成Question Answering。 数据预处理流程梳理 数据解压后包含3个json文件&#xff1a;hw7_train.json, hw7_dev.json, hw7_test.json。 DRCD: 台達閱讀理解資料集 Delta Reading Comprehension …

react 中的hooks中的useState

(1). State Hook让函数组件也可以有state状态, 并进行状态数据的读写操作 (2). 语法: const [xxx, setXxx] React.useState(initValue) (3). useState()说明:参数: 第一次初始化指定的值在内部作缓存返回值: 包含2个元素的数组, 第1个为内部当前状态值, 第2个为更新状态值的…

jmeter用csv data set config做参数化1

在jmeter中&#xff0c;csv data set config的作用非常强大&#xff0c;用它来做批量测试和参数化非常好用。 csv data set config的常用配置项如下&#xff1a; Variable Names处&#xff0c;写上源文件中的参数名&#xff0c;用于后续接口发送请求时引用 Ignore first line…

【Linux】waitpid函数 及其 非阻塞等待和阻塞等待

父进程等待子进程结束可以通过两种方式实现&#xff1a;阻塞等待和非阻塞等待。这两种方式各有优缺点&#xff0c;适用于不同的场景。 简单来说&#xff1a; 阻塞等待&#xff1a;先等你&#xff0c;我再继续 非阻塞等待&#xff1a;不等你&#xff0c;我继续做自己的事&…

初识适配器模式

适配器模式 引入 生活中的例子&#xff1a;当我们使用手机充电时&#xff0c;充电器起到了转换器的作用&#xff0c;它将家用的220伏特电压转换成适合手机充电的5伏特电压。 适配器模式的三种类型 命名原则&#xff1a;适配器的命名应基于资源如何传递给适配器来进行。 类适配…

Web架构演变历程~

1、背景 对于服务架构&#xff0c;这个名词大家应该都很熟悉了吧&#xff0c;一个好的架构并不是一个最合适的架构&#xff0c;在对于选择那种架构&#xff0c;对于一个项目后续发展致关重要&#xff0c;接下来我们一起走进web服务架构的演变历程看看吧&#xff01; 2、服务架…

基于STM32F407VGT6芯片----跑马灯实验

一、在STM32F407VGT6芯片中配置GPIO环境 对于一个跑马灯实验&#xff0c;首先&#xff0c;要了解的就是&#xff0c;芯片是如何构造出来的&#xff0c;设计GPIO引脚&#xff1a;根据原理图&#xff0c; PC4&#xff0c;PC5,PC6,PC7 为 LED 输出控制管脚&#xff0c;PE0 为蜂鸣…

Spring Boot视频网站:安全与可扩展性设计

4 系统设计 4.1系统概要设计 视频网站系统并没有使用C/S结构&#xff0c;而是基于网络浏览器的方式去访问服务器&#xff0c;进而获取需要的数据信息&#xff0c;这种依靠浏览器进行数据访问的模式就是现在用得比较广泛的适用于广域网并且没有网速限制要求的B/S结构&#xff0c…