C语言_指针_进阶

引言:在前面的c语言_指针初阶上,我们了解了简单的指针类型以及使用,下面我们将进入更深层次的指针学习,对指针的理解会有一个极大的提升。从此以后,指针将不再是难点,而是学习底层语言的一把利器。

本章重点

  • 字符指针
  • 数组指针
  • 指针数组
  • 数组传参和指针传参
  • 函数指针
  • 函数指针数组
  • 指向函数指针数组的指针
  • 回调函数
  • 指针和数组面试题的解析

指针的主题,我们在初级阶段的《指针》章节已经接触过了,我们知道了指针的概念:

  1. 指针就是个变量,用来存放地址,地址唯一标识一块内存空间。

  2. 指针的大小是固定的4/8个字节(32位平台/64位平台)。

  3. 指针是有类型,指针的类型决定了指针的±整数的步长,指针解引用操作的时候的权限。

  4. 指针的运算。

这个章节,我们继续探讨指针的高级主题。

1. 字符指针

在指针的类型中我们知道有一种指针类型为字符指针char*;

一般使用:

int main()
{char ch = 'w';char *pc = &ch;*pc = 'w';return 0;
}

还有一种使用方式如下:

int main()
{char* pstr = "hello bit.";//这里是把一个字符串放到pstr指针变量里了吗?printf("%s\n", pstr);return 0;
}

代码char* pstr = "hello bit.";特别容易让同学以为是把字符串hello bit 放到字符指针了,但是本质是把字符串pstr 里hello bit,首字符的地址放到了pstr中。

类似于int arr[3] = {1, 2, 3}; int* parr = arr。我们知道数组名就是首元素地址,那么将数组名当作地址存入parr的指针变量中。

在这里插入图片描述

我们可以看到结果确实是把字符串的首元素地址存储在了parr指针变量中。

一道面试题:

在这里插入图片描述

输出结果:

在这里插入图片描述

为什么会产生出这种结果?
通俗易懂来说,str1以及str2它们各自开辟了一块空间,然后都拿了相同的字符串进行存储,那么即便值相同,地址却是不相同的。
str3和str4都指向了一块常量,我们知道常量是不可以被修改的,所以也没必要产生出两个指针指向同一个常量,由此可得,str3 == str4。
所以这里的区别就是:一个是存储值,一个是指向常量。

当我们往下面学习指针数组和数组指针的时候,就会产生一种没来由的困惑,读起来都有点绕口。其实辨别起来很简单:只需要去看最后两个字是什么。

指针数组:数组,装有指针元素的数组
数组指针:指针,指向数组的指针

2. 指针数组

在C语言_指针_初阶章节,我们也学了指针数组,指针数组是一个存放指针的数组。

这里我们再复习一下,下面指针数组是什么意思?

int* arr1[10]; //整形指针的数组
char *arr2[4]; //一级字符指针的数组
char **arr3[5];//二级字符指针的数组

通过指针数组模拟实现二维数组

在这里插入图片描述

3. 数组指针

3.1 数组指针的定义

数组指针是指针?还是数组?

答案是:指针。

我们已经熟悉了:整型指针:int* ptr;能够指向整形数据的指针。浮点型指针:float* ptr;能够指向浮点型数据的指针。

那数组指针也就很明确了:指向数组的指针。

下面代码哪个是数组指针?

int *p1[10];
//p1先跟[]结合,说明他是数组,[]里面是10,说明装有10个整型指针的元素。
int (*p2)[10];//数组指针//p1, p2分别是什么?

画图详解

在这里插入图片描述

解释:

首先,p和先做结合,也就是( * p),说明p是指针变量,然后外面还剩下int [10],这个我们之前见过,也就是装有10个整型元素的数组。那么好像就能合起来解释了,也就是指向装有10个整型元素的数组的指针。
总结:p是指针,指向一个数组,也就是数组指针。
这里需要注意的是:[]的优先级是要高于 * 号的,所以必须加上()来保证p先和
结合。

3.2 &数组名 VS 数组名

对于下面的数组:

int arr[10];

arr&arr 分别是啥?

我们知道arr是数组名,数组名表示数组首元素的地址。

那&arr数组名到底是啥?

我们看一段代码:

#include <stdio.h>
int main()
{int arr[10] = {0};printf("%p\n", arr);printf("%p\n", &arr);return 0;
}

输出结果

在这里插入图片描述
可见数组名和&数组名打印的地址是一样的。

难道两个是一样的吗?

我们再看一段代码:

#include <stdio.h>
int main()
{int arr[10] = { 0 };printf("arr = %p\n", arr);printf("&arr= %p\n", &arr);printf("arr+1 = %p\n", arr+1);printf("&arr+1= %p\n", &arr+1);return 0;
}

输出结果

在这里插入图片描述

根据上面的代码我们发现,其实&arr和arr,虽然值是一样的,但是意义应该是不一样的。
实际上:&arr 表示的是数组的地址,而不是数组首元素的地址。(细细体会一下)
数组的地址+1,跳过整个数组的大小,所以&arr+1 相对于 &arr 的差值是40。

从上面可知,数组名就是首元素的地址,那么sizeof(数组名),难道取的是指针变量的字节嘛?

在这里插入图片描述

由此可得,sizeof(数组名)并不是取得首元素地址的字节;这里的数组名代表了整个数组,也就是取得是整个数组的地址。

在这里插入图片描述

我们可以看到虽然表达出来的结果完全一样,但内在的意义确实完全不相同。

总结:

数组名大部分情况下都是首元素地址,但有两个例外,如下:

1.sizeof(数组名),这里面的数组名代表的是整个数组,所以取出来的字节也就是整个数组的字节。

2.&数组名,这里的数组名代表的也是整个数组,那么取出来的地址也就是整个数组的地址。

3.3 数组指针的使用

那数组指针是怎么使用的呢?

既然数组指针指向的是数组,那数组指针中存放的应该是数组的地址。

下面我们通过数组指针完成对数组内的元素进行一个遍历。

在这里插入图片描述

画图详解

在这里插入图片描述

上面我们讲述了一维数组取地址变成数组指针的使用方式,下面我们来讲述二维数组取地址变成数组指针的使用方式,并且会画图详细的描述整个流程。

在这里插入图片描述

画图详解 -> 分批次详细解读针对二维数组取地址变成数组指对内部的值进行访问的一个过程

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4. 数组参数、指针参数

4.1 一维数组传参

#include <stdio.h>
void test(int arr[])//ok?
//实参传递了数组名,形参就可以用数组类型进行接受
{}
void test(int arr[10])//ok?
//完全没问题
{}
void test(int *arr)//ok?
//指向int类型元素的地址,也就是指向首元素的地址。
{}
void test2(int *arr[20])//ok?
//完全没问题
{}
void test2(int **arr)//ok?
//(*arr)是一个指针,指向了一个int*类型的元素。
{}int main()
{int arr[10] = {0};int *arr2[20] = {0};test(arr);test2(arr2);
}

4.2 二维数组传参

void test(int arr[3][5])//ok?
//完全没问题
{}
void test(int arr[][])//ok?
//不能省略一维数组中存储元素的个数。
{}
void test(int arr[][5])//ok?
//正确,可以省略二维数组的一维元素个数。
{}
//总结:二维数组传参,函数形参的设计只能省略第一个[]的数字。
//因为对一个二维数组,可以不知道有多少行,但是必须知道一行多少元素。
//这样才方便运算。
void test(int *arr)//ok?
//错误,形参的意思是指向整型元素的地址,跟题意完全不同。
{}
void test(int* arr[5])//ok?
//错误,形参是指针数组的意思,跟题意完全不同。
{}
void test(int (*arr)[5])//ok?
//正确,(*arr)是指针,指向了一个装有五个整型元素的数组。
{}
void test(int **arr)//ok?
//错误,首元素地址代表的是一维数组的整个数组地址。
{}int main()
{int arr[3][5] = {0};test(arr);
}

一级指针传参

#include <stdio.h>
void print(int *p, int sz)
{int i = 0;for(i=0; i<sz; i++){printf("%d\n", *(p+i));}
}int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9};int *p = arr;int sz = sizeof(arr)/sizeof(arr[0]);//一级指针p,传给函数print(p, sz);return 0;
}

当一个函数的参数部分为一级指针的时候,函数能接收什么参数?

void test(char* ptr)
{}int main()
{char arr[10] = "abcdef";char ch = 'a';char* ptr = arr;test(arr);test(&ch);test(ptr);return 0;
}

二级指针传参

#include <stdio.h>
void test(int** ptr)
{printf("num = %d\n", **ptr);    
}int main()
{int n = 10;int*p = &n;int **pp = &p;int* arr[5];test(pp);test(&p);test(arr);return 0;
}

5. 函数指针

首先,我们看最后两位是指针,那么他其实就是指向函数的指针。

在这里插入图片描述

输出的是两个地址,这两个地址是test函数的地址。 那我们的函数的地址要想保存起来,怎么保存?

下面我们看代码:

void test(char* pc, int arr[10])
{}int main()
{void (*ptr)(char*, int [10]) = &test;//&test跟test都能表达地址,可以省略&。return 0;
}

首先*和ptr先结合,说明它是指针,指向的是一个函数,里面有char*的类型和int [10] 类型,这个函数的类型是void类型。
总结:指向了一个void类型函数里面参数有char*类型以及int[10]类型的指针。

那么,我们既然知道了函数指针怎么创建,那下面我们就继续讨论,怎么使用函数指针。

在这里插入图片描述

看起来我们好像知道了该怎么使用函数指针进行传参了,上面我们已经了解了pf就是函数地址,但是,这里的(*pf)并不是对pf做一个解引用的访问,在函数指针中,函数名 == &函数名,也就是说这里的*号仅仅起到装饰的作用,并不能跟解引用访问串联起来。

聪明的朋友已经看出来了,add和&add都是代表着函数地址的意思,那么pf好像等价于add,那有没有可能pf(参数1,参数2)也可以进行函数调用呢?

在这里插入图片描述

看起来跟我们的想法是正确的。

阅读两段有趣的代码:

 (*(void (*)())0)();

画图详解

在这里插入图片描述

 void (*signal(int , void(*)(int)))(int);

画图详解

在这里插入图片描述

在做一个类似的题目再次进行巩固所学的知识

在这里插入图片描述

6. 函数指针数组

数组是一个存放相同类型数据的存储空间,那我们已经学习了指针数组, 比如:

int *arr[10];
//数组的每个元素是int*

那要把函数的地址存到一个数组中,那这个数组就叫函数指针数组,那函数指针的数组如何定义呢?

int (*parr1[10]])();

parr1先和[]结合,说明它是一个数组,数组里面装有10个int(*)()函数类型元素。

那么我们从这里就明白了,函数指针数组的写法,那么我们开拓一下思路,是不是也就知道了数组指针数组的写法?

int arr_1[5] = { 1, 2, 3, 4, 5 };
int arr_2[5] = { 1, 2, 3, 4, 5 };
int arr_3[5] = { 1, 2, 3, 4, 5 };
int (*parr[3])[5] = {&arr_1, &arr_2, &arr_3};

parr先和[3]结合,说明parr是一个数组,里面装有三个指向装有5个int类型元素的数组的指针
听着可能有些绕口,我们把这段话再次拆开来细细分析。
我们就先看里面的内容,简单来说是不是就是指向数组的指针?然后数组里面有三个元素都是这样的类型。

函数指针数组的用途:转移表

例子:(计算器)

//加法
int add(int x, int y)
{return x + y;
}//减法
int sub(int x, int y)
{return x - y;
}//乘法
int mul(int x, int y)
{return x * y;
}//除法
int div(int x, int y)
{return x / y;
}void menu()
{printf("****************************\n");printf("*****  1.add    2.sub  *****\n");printf("*****  3.mul    4.div  *****\n");printf("*****  0.exit          *****\n");printf("****************************\n");
}int main()
{int input = 0;int x = 0;int y = 0;int ret = 0;do{menu();printf("请选择:");scanf("%d", &input);switch (input){case 1:printf("请输入两个数字:");scanf("%d %d", &x, &y);ret = add(x, y);printf("ret = %d\n", ret);break;case 2:printf("请输入两个数字:");scanf("%d %d", &x, &y);ret = sub(x, y);printf("ret = %d\n", ret);break;case 3:printf("请输入两个数字:");scanf("%d %d", &x, &y);ret = mul(x, y);printf("ret = %d\n", ret);break;case 4:printf("请输入两个数字:");scanf("%d %d", &x, &y);ret = div(x, y);printf("ret = %d\n", ret);break;case 0:printf("退出计算器!!!\n");break;default:printf("输入错误,请重新选择!!!\n");break;}} while (input);return 0;
}

虽然实现了计算器项目,但是可以看到代码中出现了大量重复的代码,显得十分冗余。

所以,衍生出了下面的这个方式,使用函数指针数组实现计算器:

//加法
int add(int x, int y)
{return x + y;
}//减法
int sub(int x, int y)
{return x - y;
}//乘法
int mul(int x, int y)
{return x * y;
}//除法
int div(int x, int y)
{return x / y;
}void menu()
{printf("****************************\n");printf("*****  1.add    2.sub  *****\n");printf("*****  3.mul    4.div  *****\n");printf("*****  0.exit          *****\n");printf("****************************\n");
}int main()
{int input = 0;int x = 0;int y = 0;int ret = 0;//函数指针数组int (*PfArr[5])(int, int) = {NULL, add, sub, mul, div};do{menu();printf("请选择:");scanf("%d", &input);if (input >= 1 && input <= 4){printf("请输入两个数字:");scanf("%d %d", &x, &y);//通过函数指针数组调用函数 - 转移表//通过函数指针数组找到对应下标然后跳到该函数位置得到结果再次返回来。int ret = (*PfArr[input])(x, y);printf("ret = %d\n", ret);}else if (input == 0){printf("退出计算器!!!\n");}else{printf("输入有误,请重新检查!!!\n");}} while (input);return 0;
}

可以明显的感受到代码进行了简化。

7. 指向函数指针数组的指针

其实很好理解,指针指向了一个数组,数组里面的元素都是函数指针。

void test(const char* str)
{printf("%s\n", str);
}int main()
{//函数指针void(*pf)(const char*) = &test;//函数指针数组void(*pf[5])(const char*);//指向函数指针数组的指针void(*(*pf)[5])(const char*);//再次拓展//指向函数指针数组的指针的数组void(*(*pf[5])[5])(const char*);return 0;
}

8. 回调函数

回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应。

画图详解:

在这里插入图片描述
那我们知道了回调函数的概念,通过回调函数来继续实现计算器项目

//加法
int add(int x, int y)
{return x + y;
}//减法
int sub(int x, int y)
{return x - y;
}//乘法
int mul(int x, int y)
{return x * y;
}//除法
int div(int x, int y)
{return x / y;
}//菜单
void menu()
{printf("****************************\n");printf("*****  1.add    2.sub  *****\n");printf("*****  3.mul    4.div  *****\n");printf("*****  0.exit          *****\n");printf("****************************\n");
}//在特定条件下通过传递过来的地址作为媒介去调用函数
void Cacl(int(*pf)(int, int))
{int x = 0;int y = 0;printf("请输入两个数字:");scanf("%d %d", &x, &y);int ret = (*pf)(x, y);printf("ret = %d\n", ret);
}int main()
{int input = 0;int x = 0;int y = 0;int ret = 0;do{menu();printf("请选择:");scanf("%d", &input);switch (input){case 1:Cacl(add);break;case 2:Cacl(sub);break;case 3:Cacl(mul);break;case 4:Cacl(div);break;case 0:printf("退出计算器!!!\n");break;default:printf("输入有误,请重新输入!!!\n");break;}} while (input);return 0;
}

通过回调函数的方式完成计算器项目,代码也是得到了很大的简化。

下面在讲qsort之前,我们先了解一下冒泡排序的思路。

其实冒泡排序的核心思路不难,就是通过相邻两个数字进行对比,不断的将一个最大值或者最小值挪到最右边,以上仅仅是一趟,我们要通过多躺实现最终的效果。

我们将冒泡排序再次复习一遍。

//冒泡排序
void Bubble_sort(int* arr, int sz)
{int i = 0;//趟数for (i = 0; i < sz - 1; i++){int j = 0;//一趟比较的次数for (j = 0; j < sz - 1 - i; j++){//相邻两个数字进行比对if (arr[j] < arr[j + 1]){//三个空杯子原理进行交换int tmp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tmp;}}}
}//输出排序结果
void Printf(int* arr, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", arr[i]);}return 0;
}int main()
{int arr[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };int sz = sizeof(arr) / sizeof(arr[0]);Bubble_sort(arr, sz);Printf(arr, sz);return 0;
}

输出结果:

在这里插入图片描述

首先演示一下qsort函数的使用:

#include <stdlib.h>
#include <string.h>//void*指针 - 无具体类型指针
// void*指针可以接受任意类型的指针
//void*类型指针不能直接进行解引用访问
//也不能直接用来进行指针运算//整型数组通过整型元素比较
int cmp_int(const void* p1, const void* p2)
{return *(int*)p2 - *(int*)p1;
}//输出结果
void Printf(int* arr, int sz)
{int i = 0;for (i = 0; i < sz; i++){printf("%d ", arr[i]);}
}//测试qsort排序整型
void test1()
{int arr[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };int sz = sizeof(arr) / sizeof(arr[0]);qsort(arr, sz, sizeof(int), cmp_int);Printf(arr, sz);
}//测试qsort排序结构体
typedef struct Stu Stu;
struct Stu
{char name[20];int age;
};//结构体通过年龄比较
int cmp_stu_by_age(const void* p1, const void* p2)
{return (((Stu*)p1)->age - ((Stu*)p2)->age);
}//结构体通过名字比较
int cmp_stu_by_name(const void* p1, const void* p2)
{//名字不能直接相减,需要通过专门的字符比较函数 - strcmpreturn strcmp(((Stu*)p1)->name, ((Stu*)p1)->name);
}void test2()
{Stu arr[3] = { {"XingC", 22}, {"qmx_07", 20}, {"Yuu", 21}};int sz = sizeof(arr) / sizeof(arr[0]);qsort(arr, sz, sizeof(arr[0]), cmp_stu_by_age);printf("%d\n", arr[2].age);
}void test3()
{Stu arr[3] = { {"XingC", 22}, {"qmx_07", 20}, {"Yuu", 21} };int sz = sizeof(arr) / sizeof(arr[0]);qsort(arr, sz, sizeof(arr[0]), cmp_stu_by_name);int i = 0;for (i = 0; i < 3; i++){printf("name = %s\tage = %d\n", arr[i].name, arr[i].age);}
}int main()
{test1();test2();test3();return 0;
}

使用回调函数,模拟实现qsort(采用冒泡的方式)。

问题一:传统冒泡排序我们会用整型数组类型接收,那么我们想模拟实现快排,那就不能固定使用整型数组类型
问题二:传统冒泡排序比较使用大小符号比较的,那么结构体如何使用大小符号比较呢?
问题三:传统冒泡排序符合条件进行交换是通过三个杯子交换实现的,但是不同的数据交换略有差异。

//交换
//因为我们不知道我们要交换的类型是什么,所以以最小字节来进行一一交换最合适不过
//我们还是需要知道这个类型的字节多少,所以传入了一个sz
void Swap(char* buf1, char* buf2, int sz)
{int i = 0;//我们知道字节大小的情况下,循环交换两数的每个字节for (i = 0; i < sz; i++){char tmp = *(buf1 + i);*(buf1 + i) = *(buf2 + i);*(buf2 + i) = tmp;}
}void Bubble_sort(const void* base, int num, int sz, int (*cmp)(const void*, const void*))
{int i = 0;for (i = 0; i < num - 1; i++){int j = 0;for (j = 0; j < num - 1 - i; j++){//通过我们自己写的比较函数来判断是否符合条件if ((*cmp)((char*)base + j * sz, (char*)base + (j + 1) * sz) > 0){//交换Swap((char*)base + j * sz, (char*)base + (j + 1) * sz, sz);}}}
}//定义结构体
typedef struct Stu Stu;
struct Stu
{char name[20];int age;
};//结构体年龄成员比较方式
int cmp_stu_by_age(const void* p1, const void* p2)
{return (((Stu*)p1)->age - ((Stu*)p2)->age);
}//结构体名字成员比较方式
int cmp_stu_by_name(const void* p1, const void* p2)
{return strcmp(((Stu*)p1)->name, ((Stu*)p2)->name);
}//测试Bubble_sort 排序结构体数据
void test_2()
{Stu arr[3] = { {"XingC", 22}, {"qmx_07", 20}, {"Yuu", 21} };int sz = sizeof(arr) / sizeof(arr[0]);Bubble_sort(arr, sz, sizeof(arr[0]), cmp_stu_by_name);int i = 0;for (i = 0; i < sz; i++){printf("name = %s\tage = %d\n", arr[i].name, arr[i].age);}
}//整型比较方式
int cmp_int(const void* p1, const void* p2)
{return *(int*)p1 - *(int*)p2;
}//测试Bubble_sort 排序整型数据
void test_1()
{int arr[10] = {5, 7, 2, 3, 9, 1, 6, 8, 4, 10};int sz = sizeof(arr) / sizeof(arr[0]);//cmp_int是函数名;实参传入函数名,形参接收函数的类型Bubble_sort(arr, sz, sizeof(arr[0]), cmp_int);int i = 0;for (i = 0; i < sz; i++){printf("%d ", arr[i]);}
}int main()
{/*test_1();*/test_2();return 0;
}

9. 指针和数组笔试题解析

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

画图详解

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

对于指针来说,类型只是一个环节,最重要的是你要知道指针指向哪里。

总结:

  1. sizeof(数组名),这里的数组名表示整个数组,计算的是整个数组的大小。
  2. &数组名,这里的数组名表示整个数组,取出的是整个数组的地址。
  3. 除此之外所有的数组名都表示首元素的地址。

10. 指针笔试题

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

输出结果:
在这里插入图片描述

总结:

  • 当我们能学到这里的时候,想必已经对指针了解的比较深入了,纵观整个指针的学习过程中,其实一直绕不开的就是指针类型,最重要的也就是指针类型,我们一直围绕的也就是指针类型。

  • 其实指针就是一个指向或者是一个地址,当不需要进行任何操作的时候,就可以用void*替代,但涉及到任何运算以及解引用操作权限都需要指针类型。

  • 当我们能彻底搞清楚我们指针的类型的时候,那么也就对解引用操作以及运算移动操作都将非常清晰,让我们在底层的访问中无往不利。

本章完~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/452123.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql(2)—SQL语法详解(通俗易懂)

一、关于SQL 1.1 简介 SQL&#xff08;Structured Query Language&#xff0c;结构化查询语言&#xff09;是一种用于管理关系型数据库的标准编程语言。它主要用于数据的查询、插入、更新和删除等操作。SQL最初在1970年代由IBM的研究人员开发&#xff0c;旨在处理关系数据模型…

API的力量:解决编程技术问题的利器

在软件开发的世界里&#xff0c;编程技术问题无处不在。从数据获取到用户认证&#xff0c;从支付处理到地图服务&#xff0c;这些问题的解决方案往往需要深厚的专业知识和大量的开发时间。然而&#xff0c;应用程序编程接口&#xff08;API&#xff09;的出现&#xff0c;为开发…

长序列时间序列预测模型:Informer与TimesNet

Informer超越长序列时间序列预测 Informer是一种针对长序列时间序列预测的高效Transformer模型&#xff0c;旨在解决传统Transformer在处理长序列时的局限性。该模型引入了一些关键技术&#xff0c;以提高效率和准确性。以下是对Informer模型的详细介绍&#xff1a; 1. 模型背…

CMOS晶体管的串联与并联

CMOS晶体管的串联与并联 前言 对于mos管的串联和并联&#xff0c;一直没有整明白&#xff0c;特别是设计到EDA软件中&#xff0c;关于MOS的M和F参数&#xff0c;就更困惑了&#xff0c;今天看了许多资料以及在EDA软件上验证了电路结构与版图的对应关系&#xff0c;总算有点收…

opencv 图像翻转- python 实现

在做图像数据增强时会经常用到图像翻转操作 flip。 具体代码实现如下&#xff1a; #-*-coding:utf-8-*- # date:2021-03 # Author: DataBall - XIAN # Function: 图像翻转import cv2 # 导入OpenCV库path test.jpgimg cv2.imread(path)# 读取图片 cv2.namedWindow(image,1) …

go压缩的使用

基础&#xff1a;使用go创建一个zip func base(path string) {// 创建 zip 文件zipFile, err : os.Create("test.zip")if err ! nil {panic(err)}defer zipFile.Close()// 创建一个新的 *Writer 对象zipWriter : zip.NewWriter(zipFile)defer zipWriter.Close()// 创…

D39【python 接口自动化学习】- python基础之函数

day39 函数的返回值 学习日期&#xff1a;20241016 学习目标&#xff1a;函数&#xfe63;-52 函数的返回值&#xff1a;如何得到函数的执行结果&#xff1f; 学习笔记&#xff1a; return语句 返回值类型 def foo():return abc var foo() print(var) #abc# 函数中return函…

pc轨迹回放制作

亲爱的小伙伴&#xff0c;在您浏览之前&#xff0c;烦请关注一下&#xff0c;在此深表感谢&#xff01; 课程主题&#xff1a;pc轨迹回放制作 主要内容&#xff1a;制作车辆轨迹操作页&#xff0c;包括查询条件、动态轨迹回放、车辆轨迹详情表单等 应用场景&#xff1a;车辆…

微软的 Drasi:一种轻量级的事件驱动编程方法

微软的开源数据变化处理平台有望提供一种全新的方式来构建和管理可产生持续事件流的云应用程序。 Microsoft Azure 孵化团队是微软超大规模云中比较有趣的组成部分之一。它介于传统软件开发团队和研究组织之间&#xff0c;致力于构建大规模分布式系统问题的解决方案。 这些解决…

普通java web项目集成spring-session

之前的老项目&#xff0c;希望使用spring-session管理会话&#xff0c;存储到redis。 项目环境&#xff1a;eclipse、jdk8、jetty嵌入式启动、非spring项目。 实现思路&#xff1a; 1.添加相关依赖jar。 2.配置redis连接。 3.配置启动spring。 4.配置过滤器&#xff0c;拦…

gaussdb 主备 8 数据库安全学习

1 用户及权限 1.1 默认权限机制-未开启三权分立 1.1.1 数据库系统管理员具有与对象所有者相同的权限。也就是说对象创建后&#xff0c;默认只有对象所有者或者系统管理员可以查询、修改和销毁对象&#xff0c;以及通过GRANT将对象的权限授予其他用户。 1.1.2 GaussDB支持以下的…

【C51】单片机与LED数码管的静态显示接口案例分析

目录 ---案例需求--- 1、电路设计 2、程序 3、元器件清单 4、程序仿真 LED数码管有静态显示和动态显示两种显示方式。静态显示是指无论有多少位LE数码管&#xff0c;其都同处于显示状态。数码管工作于静态显示方式时&#xff0c;各位的共阴极&#xff08;或共阳极&#xf…

“网络协议入门:HTTP通信的四大组成部分“

White graces&#xff1a;个人主页 &#x1f649;专栏推荐:Java入门知识&#x1f649; &#x1f439;今日诗词: 春水满四泽&#xff0c;夏云多奇峰&#x1f439; ⛳️点赞 ☀️收藏⭐️关注&#x1f4ac;卑微小博主&#x1f64f; ⛳️点赞 ☀️收藏⭐️关注&#x1f4ac;卑微…

USART串口(发送和接收)

目录 一. USART串口协议 二. USART串口外设 三. 串口发送接收 四. 效果展示 一. USART串口协议 USART(Universal Synchronous/Asynchronous Receiver/Transmitter)通用同步/异步收发器。 通信的目的&#xff1a;将一个设备的数据传送到另一个设备&#xff0c;扩展硬件系统。…

端点物联网学习资源合集

端点物联网 学习资源合集 导航 1. 物联网实战--入门篇 文章链接 简介&#xff1a;物联网是一个包罗万象的行业和方向&#xff0c;知识碎片严重&#xff0c;本系列文章通过 边学边用 的思想&#xff0c;逐步建立学习者的信心和兴趣&#xff0c;从而进行更深入透彻的学习和探索…

kaptcha依赖maven无法拉取的问题

老依赖了&#xff0c;就是无法拉取&#xff0c;也不知道为什么&#xff0c;就是用maven一直拉去不成功&#xff0c;还以为是魔法的原因&#xff0c;试了好久发现不是&#xff0c;只好在百度寻求帮助了&#xff0c;好在寻找到了这位大佬的文章Maven - 解决无法安装 Kaptcha 依赖…

信息安全工程师(57)网络安全漏洞扫描技术与应用

一、网络安全漏洞扫描技术概述 网络安全漏洞扫描技术是一种可以自动检测计算机系统和网络设备中存在的漏洞和弱点的技术。它通过使用特定的方法和工具&#xff0c;模拟攻击者的攻击方式&#xff0c;从而检测存在的漏洞和弱点。这种技术可以帮助组织及时发现并修补漏洞&#xff…

衡石分析平台系统分析人员手册-可视化报表仪表盘

仪表盘​ 仪表盘是数据分析最终展现形式&#xff0c;是数据分析的终极展现。 应用由一个或多个仪表盘展示&#xff0c;多个仪表盘之间有业务关联。 仪表盘编辑​ 图表列表​ 打开仪表盘后&#xff0c;就会看到该仪表盘中所有的图表。 调整图表布局​ 将鼠标移动到图表上拖动…

到底是微服务,还是SOA?

引言&#xff1a;大概正式工作有5年了&#xff0c;换了三个大厂【也是真特么世道艰难&#xff0c;中国互联网人才饱和了】。基本上每个公司有的架构都不太相同&#xff0c;干过TOC和TOB的业务&#xff0c;但是大家用的架构都不太相同。有坚持ALL in one的SB&#xff0c;最后服务…

2024项目管理软件,不融入敏捷开发怎么行?

一、项目管理软件的重要性 在当今快节奏的商业环境中&#xff0c;项目管理软件的重要性愈发凸显。随着市场竞争的不断加剧&#xff0c;企业面临着越来越多的挑战&#xff0c;项目的复杂性和不确定性也在不断增加。在这样的背景下&#xff0c;项目管理软件成为了团队高效规划、…