用Spring AI 做智能客服,基于私有知识库和RAG技术

Java智能客服系统运用RAG技术提升答疑精准度

基于Spring ai 的 RAG(检索增强生成)技术,Java智能客服系统能够利用私有知识库中的信息提供更准确的答疑服务。

它的核心思路是:

首先,将客服QA以Word形式导入到系统中,通过向量化处理并存储在如阿里云的远程VectorStore中。

当用户提出问题时,Java编写的智能客服程序使用DocumentRetriever从VectorStore检索相关文档片段,并将其与原始查询一起传递给大模型进行处理。

大模型结合上下文信息生成回复内容,从而实现了基于已有知识的有效客户互动。此过程中,Spring AI Alibaba框架支持无缝集成这些组件,确保了Java智能客服解决方案的高度可扩展性和灵活性。

RAG 是一种用于提升大模型精准度的检索增强生成技术

检索增强生成 (RAG) 是一种结合了检索模型和生成模型的技术,以提高大模型的响应准确性。在使用大模型时,一个常见问题是模型可能会产生“幻觉”,即生成的信息可能并不准确或相关。此外,大模型通常不包含企业的私有知识库,因此其回答可能过于泛泛而不精准。RAG通过引入私有知识库解决了这些问题,使得模型能够基于具体且专有的数据集生成更加精确、具体的答案。这样,不仅可以减少模型的幻觉现象,还能让生成的内容更贴合企业的实际情况。

Spring AI Alibaba 是一个阿里依托Spring AI构建的本地化最佳实践

Spring AI Alibaba 是一个基于 Java 的框架,旨在将 Spring 生态系统的设计原则应用到人工智能领域。它为开发者提供了一个统一的接口,使得对接不同AI服务提供商(如阿里云、OpenAI等)变得简单且高效。由Spring官方团队维护,确保了高质量与持续更新。此外,Spring AI Alibaba还整合了阿里巴巴集团的最佳实践,特别是关于RAG(检索增强生成)技术的应用,使开发者能够轻松构建具备复杂对话能力的应用程序。通过标准化的接口和强大的后端支持,Spring AI Alibaba极大地简化了在Java项目中集成高级AI功能的过程。

后端编码实践:打造检索增强的Spring AI Alibaba应用

为了实现通过读取一个名为“智能客服的专家QA.docs”的word文件来构建向量索引,并提供对外服务的功能,我们需要按照以下步骤进行操作:

前置要求

确保你的开发环境满足如下条件:

  • JDK版本在17或以上。
  • Spring Boot版本在3.3.x或以上。

获取并配置API Key

  1. 登录阿里云账号,访问阿里云百炼页面,开通“百炼大模型推理”服务。
  1. 开通成功后,创建一个新的API Key,并记下它,用于后续配置。

设置环境变量或者通过application.properties注入API Key:

export AI_DASHSCOPE_API_KEY=YOUR_VALID_API_KEY

或者在application.properties中添加:

spring.ai.dashscope.api-key: ${AI_DASHSCOPE_API_KEY}

添加仓库和依赖

由于所需的Spring AI Alibaba相关组件尚未提交到Maven中央仓库,因此需要添加Spring自己的仓库和snapshot仓库至pom.xml文件中。

<repositories><repository><id>sonatype-snapshots</id><url>https://oss.sonatype.org/content/repositories/snapshots</url><snapshots><enabled>true</enabled></snapshots></repository><repository><id>spring-milestones</id><name>Spring Milestones</name><url>https://repo.spring.io/milestone</url><snapshots><enabled>false</enabled></snapshots></repository><repository><id>spring-snapshots</id><name>Spring Snapshots</name><url>https://repo.spring.io/snapshot</url><releases><enabled>false</enabled></releases></repository></repositories>

并在项目中引入必要的依赖项:

<dependency><groupId>com.alibaba.cloud.ai</groupId><artifactId>spring-ai-alibaba-starter</artifactId><version>1.0.0-M2</version></dependency>

构建RAG服务

接下来定义我们的RagService类,负责处理文档读取、索引构建及查询逻辑。

public class RagService {private final ChatClient chatClient;private final VectorStore vectorStore;private final DashScopeApi dashscopeApi = new DashScopeApi("YOUR_API_KEY");private DocumentRetriever retriever;public RagService(ChatClient chatClient, EmbeddingModel embeddingModel) {this.chatClient = chatClient;this.vectorStore = new DashScopeCloudStore(dashscopeApi, new DashScopeStoreOptions("智能客服知识库"));this.retriever = new DashScopeDocumentRetriever(dashscopeApi,DashScopeDocumentRetrieverOptions.builder().withIndexName("智能客服知识库").build());}public String buildIndex() {String filePath = "/path/to/智能客服的QA.docs"; // 更改为你实际文件路径DocumentReader reader = new DashScopeDocumentCloudReader(filePath, dashscopeApi, null);List<Document> documentList = reader.get();vectorStore.add(documentList);return "SUCCESS";}public StreamResponseSpec queryWithDocumentRetrieval(String message) {return chatClient.prompt().user(message).advisors(new DocumentRetrievalAdvisor(retriever, DEFAULT_USER_TEXT_ADVISE)).stream();}
}

创建Controller暴露服务

最后,创建一个控制器来暴露构建索引和聊天接口。

@RestController
@RequestMapping("/ai")
public class RagController {private final RagService ragService;public RagController(RagService ragService) {this.ragService = ragService;}@GetMapping("/buildIndex")public String buildIndex() {return ragService.buildIndex();}@GetMapping("/steamChat")public Flux<String> steamChat(@RequestParam(value = "input", required = false) String input, HttpServletResponse response) {if (input == null || input.isEmpty()) {input = "默认问题";}StreamResponseSpec chatResponse = ragService.queryWithDocumentRetrieval(input);response.setCharacterEncoding("UTF-8");return chatResponse.content();}
}

解释

上述步骤首先确保了开发环境满足基本需求并通过阿里云获取到了必要的API密钥。接着通过自定义仓库地址和添加特定依赖,使得Spring应用能够利用阿里云提供的AI能力。RagService类实现了从指定文件读取数据并构建向量索引的过程,而RagController则提供了两个HTTP GET方法:一个用于初始化索引(/buildIndex),另一个用于基于构建好的索引来响应用户的查询请求(/steamChat)。这种方式允许开发者灵活地使用外部文档作为信息来源,增强了应用程序与用户之间的交互体验。

React实战:构建实时聊天应用教程


为了基于React构建一个简单的支持流输出的前端项目,我们可以遵循以下步骤。这个项目的后端接口位于 http://localhost:8080/ai/steamChat?input=…,并且返回类型为 Flux<String>

1. 创建一个新的 React 应用并安装所需依赖

首先,使用create-react-app创建一个新的React应用,并进入项目目录安装必要的npm包:

npx create-react-app frontend
cd frontend
npm install

2. 编写基础HTML文件

编辑public/index.html以设置基本的文档结构:

<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Stream Chat App</title></head><body><div id="root"></div></body></html>

3. 配置入口文件

修改src/index.js来渲染根组件App:

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';ReactDOM.render(<React.StrictMode><App /></React.StrictMode>,document.getElementById('root')
);

4. 设计主应用组件

src/App.js中定义App组件,它将作为整个应用程序的容器,并引入聊天组件:

import React from 'react';
import ChatComponent from './components/ChatComponent';function App() {return (<div className="App"><ChatComponent /></div>);
}export default App;

5. 实现聊天组件

最后,在src/components/ChatComponent.js内编写实际处理用户输入和显示消息逻辑的部分。这部分代码会发送请求到给定的后端URL,并处理从服务器接收到的数据流。

import React, { useState } from 'react';function ChatComponent() {const [input, setInput] = useState('');const [messages, setMessages] = useState('');const handleInputChange = (event) => {setInput(event.target.value);};const handleSendMessage = async () => {try {const response = await fetch(`http://localhost:8080/ai/steamChat?input=${input}`);if (!response.ok) throw new Error("Network response was not ok");const reader = response.body.getReader();const decoder = new TextDecoder('utf-8');let done = false;while (!done) {const { value, done: readerDone } = await reader.read();done = readerDone;const chunk = decoder.decode(value, { stream: true });setMessages((prevMessages) => prevMessages + chunk);}} catch (error) {console.error('Failed to fetch:', error);}};const handleClearMessages = () => {setMessages('');};return (<div><inputtype="text"value={input}onChange={handleInputChange}placeholder="Enter your message"/><button onClick={handleSendMessage}>Send</button><button onClick={handleClearMessages}>Clear</button><div><h3>Messages:</h3><pre>{messages}</pre></div></div>);
}export default ChatComponent;

上述代码段展示了如何通过异步函数handleSendMessage向后端发起请求,并读取响应体中的数据流。每次接收到新数据时,都会更新状态变量messages以反映最新的消息内容。

6. 启动项目

完成所有配置与编码后,您可以通过执行以下命令启动前端开发服务器:

npm start

这将使您的应用在本地开发环境中运行于http://localhost:3000


这段描述提供了一个详细的指南来帮助开发者理解如何根据需求建立一个简单的基于React的支持流输出的前端项目。它覆盖了从初始化项目直到实现关键功能(如发送消息及实时接收响应)的全过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/452736.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

upload-labs Pass-04

upload-labs Pass-04 在进行测试前&#xff0c;先了解一下.htaccess文件 .htaccess文件 .htaccess是Apache网络服务器一个配置文件&#xff0c;当.htaccess文件被放置在一个通过Apache Web服务器加载的目录中&#xff0c;.htaccess文件会被Apache Web服务器软件检测并执行&…

深度学习 之 模型部署 使用Flask和PyTorch构建图像分类Web服务

引言 随着深度学习的发展&#xff0c;图像分类已成为一项基础的技术&#xff0c;被广泛应用于各种场景之中。本文将介绍如何使用Flask框架和PyTorch库来构建一个简单的图像分类Web服务。通过这个服务&#xff0c;用户可以通过HTTP POST请求上传花朵图片&#xff0c;然后由后端…

【大数据技术基础 | 实验四】HDFS实验:读写HDFS文件

文章目录 一、实验目的二、实验要求三、实验原理&#xff08;一&#xff09;Java Classpath&#xff08;二&#xff09;Eclipse Hadoop插件 四、实验环境五、实验内容和步骤&#xff08;一&#xff09;配置master服务器classpath&#xff08;二&#xff09;使用master服务器编写…

D42【python 接口自动化学习】- python基础之函数

day42 高阶函数 学习日期&#xff1a;20241019 学习目标&#xff1a;函数&#xfe63;- 55 高阶函数&#xff1a;函数对象与函数调用的用法区别 学习笔记&#xff1a; 函数对象和函数调用 # 函数对象和函数调用 def foo():print(foo display)# 函数对象 a foo print(a) # &…

influxdb安装

官网&#xff1a; https://www.influxdata.com/ centos7安装 wget https://dl.influxdata.com/influxdb/releases/influxdb2-2.0.4.x86_64.rpmyum localinstall influxdb2-2.0.4.x86_64.rpm启动 systemctl start influxdb systemctl enable influxdb # netstat -npult |gre…

Springboot指定扫描路径

方式一&#xff1a;通过在启动类的SpringbootApplication中指定包扫描或类扫描 指定需要扫描的包 scanBasePackages{"待扫描包1","待扫描包2", . . . ," "} 指定需要扫描的类 scanBasePackageClasses{类1.class,类2.class,...} 方式二&#xff…

权限(补充)

在上一篇Linux权限&#xff08;想了解的可以点击看看哦&#xff09;中已经见识了一部分权限&#xff0c;但是少了很重要的一部分&#xff1a; 那就是用户之间的转换&#xff0c;文件读写的关系&#xff0c;这里就简单的介绍一些&#xff1b; 我们在Linux权限知道了目录权限的关…

sql数据库命令行操作(数据库的创建和删除)

查询数据库 查询电脑里面所有数据库 SHOW DATABASES;查询当前所处的数据库 SELECT DATABASE();应用场景&#xff1a;当我使用了USE命令后不知道自己所在哪个数据库时&#xff0c;可以使用这个命令查询自己所在数据库 创建数据库 创建 CREATE DATABASE [IF NOT EXISTS] 数据…

StarTowerChain:开启去中心化创新篇章

官网&#xff1a; www.startower.fr 在当今创新驱动的时代&#xff0c;StarTowerChain 以其独特的去中心化创新模式&#xff0c;为我们带来了新的希望和机遇。去中心化&#xff0c;这个充满活力与创造力的理念&#xff0c;正引领着我们走向未来的创新之路。 StarTowerChain …

远程连接服务器

linux客户端通过秘钥登录linux服务端root用户 [rootClient ~]# ssh-keygen Generating public/private rsa key pair. Enter file in which to save the key (/root/.ssh/id_rsa): // 存放文件&#xff0c;若直接回车就存在括号文件中&#xff09; Enter passphrase (empty f…

SpringCloudAlibaba[Nacos]注册配置中心注册与发现服务

Nacos的全称是Dynamic Naming and Configuration Service&#xff0c;Na为naming/nameServer即注册中心,co为configuration即注册中心&#xff0c;service是指该注册/配置中心都是以服务为核心。是阿里巴巴开源易于构建云原生应用的动态服务发现、配置管理和服务管理平台。 Nac…

基于预测算法的航班离港延误系统

毕业设计不知道做什么&#xff1f;想找一个结合算法与应用的项目&#xff1f;那你绝对不能错过这个"基于预测算法的航班离港延误系统"&#xff01;✈️&#x1f4ca; 项目简介&#xff1a; 这个系统专注于航班离港的延误预测&#xff0c;通过强大的神经网络技术对大…

2024软考网络工程师笔记 - 第4章.局域网和城域网

文章目录 局域网基础1️⃣局域网和城域网体系架构 IEEE&#xff08;负责链路层&#xff09;2️⃣局域网拓扑结构 &#x1f551;CSMA/CD1️⃣CSMA/CD2️⃣CSMA/CD三种监听算法3️⃣冲突检测原理 &#x1f552;二进制指数退避算法1️⃣ 二进制指数退避算法 &#x1f553;最小帧长…

IO进程---day5

1、使用有名管道实现两个进程之间的相互通信 //管道文件 #include<myhead.h> int main(int argc, const char *argv[]) {//创建有名管道文件1if(mkfifo("./pipe1",0664)-1){perror("创建管道文件失败");return 0;}if(mkfifo("./pipe2",066…

数据结构:二叉树、堆

目录 一.树的概念 二、二叉树 1.二叉树的概念 2.特殊类型的二叉树 3.二叉树的性质 4.二叉树存储的结构 三、堆 1.堆的概念 2.堆的实现 Heap.h Heap.c 一.树的概念 注意&#xff0c;树的同一层中不能有关联&#xff0c;否侧就不是树了&#xff0c;就变成图了&#xff…

RequestBody接收参数报错com.fasterxml.jackson.databind.exc.MismatchedInputException

目录&#xff1a; 1、错误现象2、解决办法3、最终验证 1、错误现象 报错的现象和代码如下&#xff1a; 2、解决办法 查了很多都说参数类型对不上&#xff0c;但是明明是对上的&#xff0c;没有问题&#xff0c;最后只有换接收方式后验证是可以的&#xff1b;最终想了一下&…

效果不错的论文介绍:Im2Flow2Act:-跨领域机器人操控技术

Im2Flow2Act: 跨领域机器人操控技术 简介 今天介绍一个比较惊艳的论文&#xff0c;Im2Flow2Act&#xff0c;可以预测应该怎么移动图象中的物体预测移动方法完成需要执行的动作任务。 Im2Flow2Act 是一个基于学习的机器人操控框架&#xff0c;旨在通过多种数据源为机器人提供操…

计算DOTA文件的IOU

背景 在目标检测任务中&#xff0c;评估不同对象之间的重叠情况是至关重要的&#xff0c;而IOU&#xff08;Intersection Over Union&#xff09;是衡量这种重叠程度的重要指标。本文将介绍如何编写一个Python脚本&#xff0c;通过并行化处理DOTA格式的标注文件&#xff0c;统…

vue3 解决背景图与窗口留有间隙的问题

需要实现一个登录界面&#xff0c;login.vue的代码如下&#xff1a; <script> import { ref } from vue;export default {setup() {return {};}, }; </script><template><div id"login-container" class"login-container"><di…

线程的同步

文章目录 线程的同步同步&#xff1a;条件变量&#xff1a;pthread_cond_init():pthread_cond_wait()pthread_cond_signalpthread_cond_broadcast cp问题伪唤醒 信号量**多线程的互斥用信号量**&#xff1a;**单线程的互斥用锁**&#xff1a; 线程的同步 同步&#xff1a; 让…