React是如何工作的?

从编写组件到最后屏幕生成界面,如上图所示,我们现在需要知道的就是后面几步是如何运行的。

概述

这张图解释了 React 渲染过程的几个阶段:

  1. 渲染触发:通过更新某处的状态来触发渲染。
  2. 渲染阶段:React 调用组件函数,确定如何更新 DOM。这是内部计算阶段,不会立即对屏幕产生视觉变化。
  3. 提交阶段:React 实际写入 DOM,进行元素的更新、插入和删除。
  4. 浏览器绘制:浏览器将更新后的内容绘制到屏幕上。

在 React 中,渲染并不是指更新 DOM 或在屏幕上显示元素。渲染仅在 React 内部发生,不会直接产生视觉变化。

 渲染触发

渲染触发条件

  1. 初次渲染:应用程序的初始渲染。
  2. 状态更新:一个或多个组件实例的状态更新(重新渲染)。

直觉上的状态更新如下:

但其实并不是,实际上它是批量更新的。

例子如下:

关键点

  • 渲染过程是为整个应用程序触发的。
  • 实际上,看起来 React 只重新渲染状态更新的组件,但背后工作并非如此。
  • 渲染不会立即触发,而是安排在 JavaScript 引擎有空闲时间时执行。事件处理程序中的多个 setState 调用也会进行批处理。

渲染阶段

什么是虚拟DOM? 

它只是一个javascript对象。

为什么需要协调(Reconciliation)和区别(diffing)?

纤维树(Fiber tree)是什么? 

  • React 元素树(虚拟 DOM):左侧显示了一个 React 组件树,包含组件如 AppVideoModalOverlayh3 和 button。这是 React 的虚拟 DOM 表示。
  • Fiber 树:右侧是 Fiber 树,它在初次渲染时被创建。每个组件实例和 DOM 元素都有一个对应的“fiber”。
  • Fiber:每个 fiber 是一个“工作单元”,包含以下信息:
    • 当前状态
    • 属性(Props)
    • 副作用
    • 使用的钩子(hooks)
    • 工作队列
  • 纤维树的特点
    • 内部树结构:每个组件实例和DOM元素都有一个对应的“fiber”。这些fiber节点形成了一个树状结构,用于描述UI界面。
    • Fiber节点不在每次渲染时重新创建:这意味着React可以复用已有的fiber节点,从而减少不必要的计算和内存使用。
    • 异步渲染

      • 异步完成工作:Fiber允许将渲染任务分成小块,利用浏览器的空闲时间进行处理。这种方式避免了长时间阻塞主线程,提高了应用的响应性。
      • 任务优先级调度:React可以根据任务的重要性来决定执行顺序,优先处理用户交互等关键任务。
    • 并发特性

      • 支持并发特性:Fiber架构支持React中的并发模式,使得应用能够更好地处理复杂交互和动态变化,例如Suspense或过渡效果。
      • 长时间渲染不会阻塞JavaScript引擎:通过将渲染过程分割成小块,React能够在不中断用户界面的情况下进行更新。
    • 具体实现

      • 增量式渲染:通过将渲染任务分配到多个帧中,React可以保持应用的流畅性,即使在复杂布局或大量计算时也能保持响应。
      • 可中断和恢复的渲染:在需要时,React可以暂停当前任务,并在稍后恢复,从而提高用户体验。

 协调(Reconciliation)举例

 区分(Diffing)举例

key prop是什么?

在list中使用key prop

使用key prop重置状态 

这不是我们想要的,需要使用key prop进行重置state。

 提交阶段

绘制阶段

总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/453568.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能优化算法-生物地理学算法(BBO)(附源码)

目录 1.内容介绍 2.部分代码 3.实验结果 4.内容获取 1.内容介绍 生物地理学优化算法 (Biogeography-Based Optimization, BBO) 是一种基于生物地理学原理的元启发式优化算法,由Dan Simon于2008年提出。BBO通过模拟物种在不同栖息地之间的迁移过程来搜索最优解&…

Dongle Sentinal在Jenkins下访问不了的问题

背景: 工作站部署的jenkins的脚本无法正常打包,定位后发现是本地获取不了license,但是使用usb over network的远程license都能获取并正常打包 分析: 获取不了license的原因是本地无法识别dongle。根据提供信息,之前…

卡特兰数解释相关的样例以及补充例题

目录 拓展的场景分析 1.圆上连接线段 2.二叉树问题 3.多边形划分三角形问题 补充的例题 P1976 鸡蛋饼 P1722 矩阵 II 通过取模处理判断选择用哪个式子​编辑 P2532 [AHOI2012] 树屋阶梯 P3978 [TJOI2015] 概率论 拓展的场景分析 1.圆上连接线段 一个圆上有2*n个点&am…

nginx中的HTTP 负载均衡

HTTP 负载均衡:如何实现多台服务器的高效分发 为了让流量均匀分配到两台或多台 HTTP 服务器上,我们可以通过 NGINX 的 upstream 代码块实现负载均衡。 方法 在 NGINX 的 HTTP 模块内使用 upstream 代码块对 HTTP 服务器实施负载均衡: upstr…

基于微博评论的自然语言处理情感分析

目录 一、项目概述 二、需要解决的问题 三、数据预处理 1、词汇表构建(vocab_creat.py) 2、数据集加载(load_dataset.py) 四、模型构建(TextRNN.py) 1、嵌入层(Embedding Layer&#xff…

Unity通过高德开放平台获取天气信息

一、注册高德开放平台账号&#xff0c;获取天气接口Key 1、构建自己的应用 网址&#xff1a;https://lbs.amap.com/api/webservice/guide/api/weatherinfo 最终调用api的地址形式&#xff1a; https://restapi.amap.com/v3/weather/weatherInfo?city110101&key<用户…

ionic Capacitor 生成 Android 应用

官方文档 https://ionic.nodejs.cn/developing/android/ https://capacitorjs.com/docs/getting-started 1、创建新的 Capacitor 应用程序 空目录下面 npm init capacitor/app2、install Capacitor npm install npm start在这里插入图片描述 3、生成dist目录 npm run buil…

华为eNSP:MAC地址漂移防止与检测

一、什么是MAC地址漂移&#xff1f; MAC地址漂移是指在计算机网络中&#xff0c;MAC&#xff08;Media Access Control&#xff09;地址被动态更改的现象。每个网络接口设备都有一个唯一的MAC地址&#xff0c;用来标识该设备在网络中的身份。然而&#xff0c;有些恶意软件或网…

15.JVM垃圾收集算法

一、垃圾收集算法 1.分代收集理论 分代收集理论是JAVA虚拟机进行垃圾回收的一种思想&#xff0c;根据对象存活周期的不同将内存分成不同的几个区域&#xff1b;一般将JAVA堆内存分为新生代和老年代&#xff1b;根据每个分代特点选择不同的垃圾收集器&#xff1b; 在新生代中&am…

深入理解 TypeScript 中的 as 关键字

在TypeScript中&#xff0c;as 关键字是一种类型断言&#xff08;Type Assertion&#xff09;的语法&#xff0c;用于告诉编译器如何理解某个变量的类型。这在开发过程中非常有用&#xff0c;尤其是当你知道比编译器更多的类型信息时 基本用法 类型断言允许你在编译时更改变量的…

InnoDB引擎(架构,事务原理,MVCC详细解读)

目录 架构分析 逻辑存储结构​ 内存结构​ Buffer Pool​ ChaneBuffer 自适应哈希​ LogBuffer​ 磁盘结构​ 后台线程​ 事务原理​ redolog日志 undolog日志​ MVCC​ 三个隐藏字段​ undolog版本链 readview​ RC(读已提交原理分析)​ RR(可重复读原理分析…

动态规划之斐波那契数列

文章目录 第 N 个泰波那契数三步问题使用最小花费爬楼梯解码方法 动态规划的基本思想是利用之前已经计算过的结果&#xff0c;通过递推关系式来计算当前问题的解。 整体思路 状态表示状态转移方程初始化填表顺序返回值 第 N 个泰波那契数 题目&#xff1a; 第 N 个泰波那契数 思…

云网络验证系统云验证+卡密生成+多应用多用户管理

云网络验证系统云验证&#xff0c;多样化应用管理方式&#xff0c;多种项目任你开发&#xff0c;分布式应用开关&#xff0c;让您的应用开发更简单&#xff0c;本系统借鉴于易如意API写法及思路&#xff0c;完美实现多用户多应用管理。 源码特色 1&#xff0c;对接&#xff1…

013_django基于大数据的高血压人群分析系统2024_dcb7986h_055

目录 系统展示 开发背景 代码实现 项目案例 获取源码 博主介绍&#xff1a;CodeMentor毕业设计领航者、全网关注者30W群落&#xff0c;InfoQ特邀专栏作家、技术博客领航者、InfoQ新星培育计划导师、Web开发领域杰出贡献者&#xff0c;博客领航之星、开发者头条/腾讯云/AW…

MarkDownload 剪裁网页插件配置使用全流程

前言 写在前面&#xff0c;大家有什么问题和需要可以跟我交流 需求 之前一直使用 Joplin 的剪裁网页功能&#xff0c;但是剪裁下来后不可避免的需要使用 Joplin 对剪裁下来的内容做处理&#xff0c;Joplin 用起来不是很习惯&#xff0c;所以在想可不可以用 Obsidian 来实现网…

图的最小生成树算法--普里姆(Prim)算法和克鲁斯克尔(Kruskal)算法

一、图的最小生成树 最小生成树&#xff08;Minimum spanning tree&#xff0c;MST&#xff09;是最小权重生成树&#xff08;Minimum weight spanning tree&#xff09;的简称&#xff0c;是一个连通加权无向图中一棵权值最小的生成树。 在一给定的无向图 G ( V , E ) G …

探索 Jupyter 笔记本转换的无限可能:nbconvert 库的神秘面纱

文章目录 探索 Jupyter 笔记本转换的无限可能&#xff1a;nbconvert 库的神秘面纱背景&#xff1a;为何选择 nbconvert&#xff1f;库简介&#xff1a;nbconvert 是什么&#xff1f;安装指南&#xff1a;如何安装 nbconvert&#xff1f;函数用法&#xff1a;简单函数示例应用场…

MySQL企业常见架构与调优经验分享

文章目录 一、选择 PerconaServer、MariaDB 还是 MYSQL二、常用的 MYSQL 调优策略三、MYSOL 常见的应用架构分享四、MYSOL 经典应用架构 观看学习课程的笔记&#xff0c;分享于此~ 课程&#xff1a;MySQL企业常见架构与调优经验分享 mysql官方优化文档 一、选择 PerconaServer、…

全方面熟悉Maven项目管理工具(二)坐标、pom.xml文件的解读!

1. 坐标&#xff08;核心概念&#xff09; 1.1 数学中的坐标 使用 x、y、z 三个向量作为空间的坐标系&#xff0c;可以在空间中唯一的定位到一个点 1.2 Maven 中的坐标 1.2.1 向量说明&#xff1a; 使用三个向量在 Maven的仓库 中唯一的定位到一个 jar 包 groupId&#xf…

【某农业大学计算机网络实验报告】实验四 路由信息协议RIP

实验目的&#xff1a; 1&#xff0e;深入了解RIP协议的特点和配置方法&#xff1a;通过此次实验&#xff0c;掌握RIP协议作为一种动态路由协议的基本工作原理&#xff0c;了解其距离向量算法的核心概念&#xff0c;以及如何在网络设备上配置RIP协议&#xff1b; 2.验证RIP协议…