跨界创新|使用自定义YOLOv11和Ollama(Llama 3)增强OCR文本识别

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【太基于深度学习的阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】66.【基于深度学习的安检X光危险品检测与识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • 引言
  • 为什么我们需要使用OCR的YOLO和Ollama?
  • 1.训练自定义Yolo11数据集
  • 2.在视频上运行边界框的自定义模型
  • 3.在边界框上运行OCR
  • 4.使用Ollama优化文本
  • 结论

引言

img

该项目通过将自定义训练的YOLO11模型与EasyOCR集成并使用LLM优化结果来增强文本识别工作流程LLM。

本文将大型语言模型(LLMs)与计算机视觉结合,通过计算机视觉训练的YOLO11模型定位文本区域,之后通过OCR的文本识别之后,最终大语言模型进行识别结果优化,以获取更加准确的文本识别效果。

为什么我们需要使用OCR的YOLO和Ollama?

传统的OCR(光学字符识别)方法可以很好地从简单的图像中提取文本,但当文本与其他视觉元素交织在一起时,往往会出现问题。通过使用自定义YOLO模型首先检测文本区域等对象,我们可以隔离这些区域进行OCR,从而显著降低噪声并提高准确性。

让我们通过在没有YOLO的图像上运行一个基本的OCR示例来演示这一点,以突出单独使用OCR的挑战:

img

import easyocr
import cv2
# Initialize EasyOCR
reader = easyocr.Reader(['en'])
# Load the image
image = cv2.imread('book.jpg')
# Run OCR directly
results = reader.readtext(image)
# Display results
for (bbox, text, prob) in results:print(f"Detected Text: {text} (Probability: {prob})")
THE 0 R |G |NAL B E STSELLE R THE SECRET HISTORY DONNA TARTT Haunting, compelling and brilliant The Times 

不是你想要的,对吧?虽然它可以很好地处理简单的图像,但当有噪音或复杂的视觉模式时,错误就会开始堆积。这就是YOLO模型介入并真正发挥作用的地方。

1.训练自定义Yolo11数据集

通过对象检测增强OCR的第一步是在数据集上训练自定义YOLO模型。YOLO(You Only Look Once)是一个强大的实时对象检测模型,它将图像划分为网格,使其能够在一次向前传递中识别多个对象。这种方法非常适合检测图像中的文本,特别是当您希望通过隔离特定区域来改善OCR结果时。

img

我们将使用预先标注的书籍封面数据集,并在其上训练YOLO11模型。YOLO11针对较小的对象进行了优化,使其非常适合在具有挑战性的上下文(如视频或扫描文档)中检测文本。

from ultralytics import YOLOmodel = YOLO("yolo11.pt")
# Train the model
model.train(data="datasets/data.yaml", epochs=50, imgsz=640)

在我的例子中,在Google Colab上训练这个模型花了大约六个小时50个时期。您可以调整参数,如epoch数量和数据集大小,或使用超参数进行实验,以提高模型的性能和准确性。

img

2.在视频上运行边界框的自定义模型

一旦YOLO模型经过训练,您就可以将其应用于视频,以检测文本区域周围的边界框。这些边界框隔离了感兴趣的区域,确保了更清晰的OCR过程:

import cv2
# Open video file
video_path = 'books.mov'
cap = cv2.VideoCapture(video_path)
# Load YOLO model
model = YOLO('model.pt')
# Function for object detection and drawing bounding boxes
def predict_and_detect(model, frame, conf=0.5):results = model.predict(frame, conf=conf)for result in results:for box in result.boxes:# Draw bounding boxx1, y1, x2, y2 = map(int, box.xyxy[0].tolist())cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)return frame, results
# Process video frames
while cap.isOpened():ret, frame = cap.read()if not ret:break# Run object detectionprocessed_frame, results = predict_and_detect(model, frame)# Show video with bounding boxescv2.imshow('YOLO + OCR Detection', processed_frame)if cv2.waitKey(1) & 0xFF == ord('q'):break
# Release video
cap.release()
cv2.destroyAllWindows()

img

此代码实时处理视频,在检测到的文本周围绘制边界框,并隔离这些区域,为下一步- OCR完美地设置它们。

3.在边界框上运行OCR

现在我们已经使用YOLO隔离了文本区域,我们可以在这些特定区域内应用OCR,与在整个图像上运行OCR相比,大大提高了准确性:

import easyocr
# Initialize EasyOCR
reader = easyocr.Reader(['en'])
# Function to crop frames and perform OCR
def run_ocr_on_boxes(frame, boxes):ocr_results = []for box in boxes:x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())cropped_frame = frame[y1:y2, x1:x2]ocr_result = reader.readtext(cropped_frame)ocr_results.append(ocr_result)return ocr_results
# Perform OCR on detected bounding boxes
for result in results:ocr_results = run_ocr_on_boxes(frame, result.boxes)# Extract and display the text from OCR resultsextracted_text = [detection[1] for ocr in ocr_results for detection in ocr]print(f"Extracted Text: {', '.join(extracted_text)}")
'THE, SECRET, HISTORY, DONNA, TARTT'

结果得到了显著改善,因为OCR引擎现在只处理明确识别为包含文本的区域,降低了不相关图像元素的误解风险。

4.使用Ollama优化文本

在使用easyocr提取文本之后,Llama 3可以通过改进通常不完美和混乱的结果来进一步改进。OCR功能很强大,但它仍然可能误解文本或返回无序的数据,特别是书籍标题或作者姓名。

LLM介入整理输出,将原始OCR结果转换为结构化的连贯文本。通过引导Llama 3使用特定的提示来识别和组织内容,我们可以将不完善的OCR数据细化为格式整齐的书名和作者姓名。最精彩的部分?你可以在本地使用Ollama!

import ollama
# Construct a prompt to clean up the OCR output
prompt = f"""
- Below is a text extracted from an OCR. The text contains mentions of famous books and their corresponding authors.
- Some words may be slightly misspelled or out of order.
- Your task is to identify the book titles and corresponding authors from the text.
- Output the text in the format: '<Name of the book> : <Name of the author>'.
- Do not generate any other text except the book title and the author.
TEXT:
{output_text}
"""
# Use Ollama to clean and structure the OCR output
response = ollama.chat(model="llama3",messages=[{"role": "user", "content": prompt}]
)
# Extract cleaned text
cleaned_text = response['message']['content'].strip()
print(cleaned_text)
The Secret History : Donna Tartt

完全正确!一旦LLM清理了文本,抛光输出可以存储在数据库中或在各种现实世界的应用程序中工作,例如:

  • 数字图书馆或书店:自动分类和显示图书标题旁边的作者。
  • 档案系统:将扫描的书籍封面或文档转换为可搜索的数字记录。
  • 自动元数据生成:根据提取的信息为图像、PDF或其他数字资产生成元数据。
  • 数据库输入:将清理后的文本直接插入数据库,确保大型系统的结构化和一致的数据。

通过结合对象检测、OCR和LLMs,您可以解锁一个强大的管道,实现更结构化的数据处理,非常适合需要高精度的应用程序。

结论

您可以通过将自定义训练的YOLO11模型与EasyOCR相结合并使用LLM增强结果来显着改进文本识别工作流程。LLM无论您是处理棘手的图像或视频中的文本,清理OCR混乱,还是使一切都超级精美,此管道都可以为您提供实时精确的文本提取和细化。


好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/453704.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Electron-(三)网页报错处理与请求监听

在前端开发中&#xff0c;Electron 是一个强大的框架&#xff0c;它允许我们使用 Web 技术构建跨平台的桌面应用程序。在开发过程中&#xff0c;及时处理网页报错和监听请求是非常重要的环节。本文将详细介绍 Electron 中网页报错的日志记录、webContents 的监听事件以及如何监…

CTFHUB技能树之XSS——过滤关键词

开启靶场&#xff0c;打开链接&#xff1a; 看上去跟上一题应该差不多&#xff0c;应该只是添加多点过滤规则吧 直接拿xss平台的代码试试&#xff1a; <sCRiPt sRC//xs.pe/6b6></sCrIpT> 这时候突然听到xss平台的上线语音提醒&#xff1a; 成功得到flag&#xff1…

react里实现左右拉伸实战

封装组件&#xff1a; 我自己写的一个简单的组件&#xff0c;可能有bug。不想自己写&#xff0c;建议用第三方库实现。 新建一个resizeBox.tsx文件写上代码如下&#xff1a; import React, { ReactNode, useState, useEffect, useRef } from react; import styles from &quo…

具备哪些特质的内外网文件交换系统 才是高科技企业需要的?

高科技企业是指涉及对国家产生深远和积极影响的先进技术的产业集群&#xff0c;它们以持续的创新和高研发投入为核心&#xff0c;推动科技进步和产业升级。高科技企业是市场经济的重要组成&#xff0c;为经济发展和技术进步提供充足动力&#xff0c;因此&#xff0c;高科技企业…

LeetCode刷题日记之贪心算法(五)

目录 前言无重叠区间划分字母区间合并区间单调递增的数字监控二叉树总结 前言 随着对贪心算法的不断深入&#xff0c;本篇文章将继续挑战一些经典的题目&#xff0c;进一步巩固这一算法的应用技巧。希望博主记录的内容能够帮助大家更好地掌握贪心算法的解题思路✍✍✍ 无重叠区…

【K8S系列】Kubernetes Pod节点CrashLoopBackOff 状态及解决方案详解【已解决】

在 Kubernetes 中&#xff0c;Pod 的状态为 CrashLoopBackOff 表示某个容器在启动后崩溃&#xff0c;Kubernetes 尝试重启该容器&#xff0c;但由于持续崩溃&#xff0c;重启的间隔时间逐渐增加。下面将详细介绍 CrashLoopBackOff 状态的原因、解决方案及相关命令的输出解释。 …

Openlayers高级交互(3/20):动态添加 layer 到 layerGroup,并动态删除

layerGroup 是 OpenLayers 库中的一个类,用于创建图层组。图层组允许您将多个图层组合在一起,并作为一个整体来控制它们的可见性和其他属性。本示例动态添加layer到layerGroup,并动态删除。 效果图 专栏名称内容介绍Openlayers基础实战 (72篇)专栏提供73篇文章,为小白群…

回归预测||时序预测||基于灰狼优化的时域卷积TCN连接Transformer-BiLSTM的数据回归预测|时序预测Matlab程序

回归预测||时序预测||基于灰狼优化的时域卷积TCN连接Transformer-BiLSTM的数据回归预测|时序预测Matlab程序 文章目录 一、基本原理一、基本概念二、原理和流程1. 数据准备2. 模型构建3. 灰狼优化算法设计4. 模型训练与优化5. 模型评估与预测 三、优势与应用四、总结 二、实验结…

Docker 用例:15 种最常见的 Docker 使用方法

容器化应用程序而不是将它们托管在虚拟机上是过去几年一直流行的概念&#xff0c;使容器管理流行起来。Docker 处于这一转变的核心&#xff0c;帮助组织无缝地采用容器化技术。最近&#xff0c;Docker 用例遍布所有行业&#xff0c;无论规模大小和性质如何。 什么是Docker&…

Windows--使用node.js的免安装版本

原文网址&#xff1a;Windows--使用node.js的免安装版本_IT利刃出鞘的博客-CSDN博客 简介 本文介绍Windows下如何使用node.js的免安装版本。 下载 1.访问官网 https://nodejs.org/en 记住这个版本号&#xff0c;这个是长期支持的版本。 2.找到压缩包 点击其他下载&#…

windows系统中,在cmd窗口演练 Redis 基本操作命令

文章目录 一、Redis 介绍1.1 Redis 的应用场景1.2 Redis 的特点 二、Windows版Redis安装三、Redis Desktop Manager安装四、Redis 常用基本操作4.1 查看操作4.2 操作string类型的命令4.2.1 设置获取Key4.2.2 MSET&#xff08;Multi&#xff09;支持批量设置key、MGET支持批量获…

平时使用Xshell能连接虚拟机,现在突然连接不上

问题&#xff1a;平时使用Xshell能连接虚拟机&#xff0c;现在突然连接不上&#xff0c;使用ip addr 命令查看ip地址 ens33 接口状态为 DOWN&#xff0c;没有分配IP地址&#xff0c;这通常意味着该网络接口未激活或存在配置问题。&#xff08;因为平时能连接&#xff0c;就说明…

DNS代理是什么?浅析DNS代理的工作原理及应用

DNS代理作为计算机网络中重要的一环&#xff0c;扮演着连接用户和互联网服务的关键角色。来了解DNS代理的定义、功能、工作原理以及在网络中的应用场景和重要性吧。 一、理解DNS代理。 DNS代理充当在用户和真正的DNS服务器之间的中介。它接收来自用户端的DNS查询请求&#xf…

std::function和bind绑定器

本文来自《深入应用C11 代码优化与工程级应用》 std::function和std::bind&#xff0c;使我们使用标准库函数时更加方便&#xff0c;且还能方便地实现延迟求值。 1.可调用对象(Callable Objects) 可调用对象有如下几种定义&#xff1a; (1)是一个函数指针 #include<ios…

php elasticsearch/elasticsearch使用apikey访问接口

此处使用的windows版es和kibana。 1.前提&#xff1a;以安装好es和kibana并正常运行&#xff0c;记得保存es安装完成时提示的账号密码。 2.登录kibana,创建索引并加入几条数据,可以通过kibana界面添加或者通过调用接口添加&#xff0c;非重点不赘述了。 3.添加ApiKey, 使用…

Linux 部署 Harbor 镜像仓库详解

文章目录 安装 Docker安装 Harbor访问 Harbor 安装 Docker 本次部署流程使用的是1台阿里云ECS&#xff0c;Ubuntu 22.04&#xff0c;2核4G。 首先需要做的是在当前服务器上&#xff0c;安装好 Docker&#xff0c;参考链接如下&#xff1a; https://blog.csdn.net/weixin_4659…

ESD防静电闸机如何保护汽车电子产品

随着汽车电子技术的快速发展&#xff0c;汽车中集成了越来越多的电子设备&#xff0c;如车载信息娱乐系统、自动驾驶传感器、驾驶辅助系统等。静电放电可能导致电子组件的损坏、性能下降&#xff0c;甚至使整个系统失效。因此&#xff0c;如何有效保护汽车电子产品免受静电损害…

【【自动驾驶】车辆运动学模型】

【自动驾驶】车辆运动学模型 1. 引言2. 以车辆重心为中心的单车模型2.1 模型介绍2.2 滑移角 β \beta β 的推导2.2 航向角 ψ \psi ψ推导过程&#xff1a;2.3 滑移角 β \beta β2.3 Python代码实现2.4 C代码实现 3. 前轮驱动的单车模型3.1 模型介绍3.3 Python代码实现3.4 …

软件I2C的代码

I2C的函数 GPIO的配置——scl和sda都配置为开漏输出 void MyI2C_Init(void) {RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);GPIO_InitTypeDef GPIO_InitStruture;GPIO_InitStruture.GPIO_Mode GPIO_Mode_Out_OD;GPIO_InitStruture.GPIO_PinGPIO_Pin_10 | GPIO_Pin_…

Debug-029-el-table实现自动滚动分批请求数据

前情提要 最近做了一个小优化&#xff0c;还是关于展示大屏方面的。大屏中使用el-table展示列表数据&#xff0c;最初的方案是将数据全部返回&#xff0c;确实随着数据变多有性能问题&#xff0c;有时请求时间比较长。这里做的优化就是实现列表的滚动到距离底部一定高度时再次请…