目录
最长连续序列
解法一:暴力枚举
复杂度
解法二:优化解法一省去二层循环中不必要的遍历
复杂度
最大子数组和
解法一:暴力枚举
复杂度
解法二:贪心
复杂度
解法三:动态规划
复杂度
最长连续序列
输入输出示例:
解法一:暴力枚举
两层循环,第一层循环是遍历整个数组;第二层循环的目的是得到最长连续序列时间复杂度极高,效率低下。
1、如果不使用哈希表在枚举过程中查找nums[i]+1时要通过遍历整个数组来进行,因此时间复杂度是O(n^2)
2、使用哈希表枚在举过程中虽说哈希表查找数据的时间复杂度是O(1),但第二次循环仍然需要执行多次,最坏的情况下其时间复杂度也会接近O(n^2)
class Solution {
public:int longestConsecutive(vector<int>& nums) {if(0 == nums.size()) //注意:需要考虑nums为空的情况,此时的最长连续序列就是0return 0;unordered_set<int> hashtable;int max_length = INT_MIN;for(const auto& e:nums) //使用哈希表去重数据hashtable.emplace(e);for(const auto& e:hashtable){int tmp = e;int cnt = 1;while(hashtable.count(++tmp))++cnt;max_length = std::max(max_length,cnt);}return max_length;}
};
复杂度
时间复杂度: O(n^2)
空间复杂度:O(n)
解法二:优化解法一省去二层循环中不必要的遍历
class Solution {
public:int longestConsecutive(vector<int>& nums) {if(0 == nums.size())return 0;int size = nums.size();int max_length = 0;unordered_set<int> hashtable;for(const auto& e:nums)hashtable.insert(e);for(const auto& e:hashtable){if(!hashtable.count(e-1))//只在哈希表中找连续序列的第一个数{int cnt = 1;int tmp = e;while(hashtable.count(++tmp))++cnt;max_length = std::max(max_length,cnt);}}return max_length;}
};
复杂度
时间复杂度:O(n)
空间复杂度:O(n)
最大子数组和
输入输出示例
解法一:暴力枚举
两层循环,定义一个max_sum变量,第二层循环中定义一个tmp变量用来记录第二层循环中连续子数组的和。
lass Solution {
public:int maxSubArray(vector<int>& nums) {int size = nums.size();int max_sum = INT_MIN;for(int i = 0;i<size;++i){int tmp = 0; //用来记录连续子数组的和for(int j = i;j<size;++j){tmp += nums[j];max_sum = std::max(max_sum,tmp);}}return max_sum;}
};
该暴力枚举会超出时间限制,不适合。
复杂度
时间复杂度:O(n^2)
空间复杂度:O(1)
解法二:贪心
class Solution {
public:int maxSubArray(vector<int>& nums) {int size = nums.size();int max_sum = nums[0]; //考虑到数组nums只有一个元素的时候,加上题目限制:子数组中至少包含一个元素int tmp = nums[0];for(int i = 1;i<size;++i){if(tmp > 0)tmp += nums[i];elsetmp = nums[i];max_sum = std::max(max_sum,tmp);}return max_sum;}
};
复杂度
时间复杂度:O(n)
空间复杂度:O(1)
解法三:动态规划
定义一个dp数组,dp[i]表示以 i 位置结尾的子数组的最大和,利用已经有的dp[i-1]值求dp[i]。
class Solution {
public:int maxSubArray(vector<int>& nums) {int size = nums.size();vector<int> dp(size);//dp[i]表示以i位置结尾的连续子数组的最大和dp[0] = nums[0];int max_sum = dp[0];//当size == 1的时候程序不进入下面循环,直接返回nums[0]for(int i = 1;i<size;++i){if(dp[i-1]>0)dp[i] = dp[i-1] + nums[i];elsedp[i] = nums[i];max_sum = std::max(max_sum,dp[i]);}return max_sum;}
};
复杂度
时间复杂度:O(n)
空间复杂度:O(n)
使用滚动数组将空间复杂度优化为O(1):
class Solution {
public:int maxSubArray(vector<int>& nums) {int size = nums.size();//vector<int> dp(size);//dp[i]表示以i位置结尾的连续子数组的最大和int dp1 = nums[0];int dp2 = 0;int max_sum = dp1;for(int i = 1;i<size;++i){if((dp1+nums[i]) > nums[i])dp2 = dp1 + nums[i];elsedp2 = nums[i];max_sum = std::max(max_sum,dp2);dp1 = dp2;//更新dp1}return max_sum;}
};