【C++篇】栈的层叠与队列的流动:在 STL 的韵律中探寻数据结构的优雅之舞

在这里插入图片描述

文章目录

  • C++ 栈与队列详解:基础与进阶应用
    • 前言
    • 第一章:栈的介绍与使用
      • 1.1 栈的介绍
      • 1.2 栈的使用
        • 1.2.1 最小栈
        • 1.2.2 示例与输出
      • 1.3 栈的模拟实现
    • 第二章:队列的介绍与使用
      • 2.1 队列的介绍
      • 2.2 队列的使用
        • 2.2.1 示例与输出
      • 2.3 队列的模拟实现
        • 2.3.1 示例与输出
    • 第三章:优先队列的介绍与使用
      • 3.1 优先队列的介绍
      • 3.2 优先队列的使用
        • 3.2.1 示例:默认大顶堆
        • 3.2.2 示例与输出
        • 3.2.3 示例:小顶堆
      • 3.3 优先队列的模拟实现
        • 3.3.1 示例与输出
    • 第四章:容器适配器
      • 4.1 什么是容器适配器
      • 4.2 deque 的简单介绍
        • 4.2.1 deque 的原理介绍
        • 4.2.2 deque 的缺陷
        • 4.2.3 deque 的常见操作
      • 4.3 为什么选择 deque 作为 stack 和 queue 的底层默认容器
      • 4.4 STL 标准库中 stack 和 queue 的模拟实现
        • 4.4.1 stack 的模拟实现
        • 4.4.2 queue 的模拟实现
    • 第五章:总结
      • 5.1 核心要点回顾

C++ 栈与队列详解:基础与进阶应用

💬 欢迎讨论:在学习过程中,如果有任何疑问或想法,欢迎在评论区留言一起讨论。

👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗?记得点赞、收藏并分享给更多的朋友吧!你们的支持是我不断进步的动力!
🚀 分享给更多人:如果你觉得这篇文章对你有帮助,欢迎分享给更多对 C++ 感兴趣的朋友,一起学习进步!


前言

栈与队列是常见的数据结构,常被用于不同的算法场景。在本文中,我们将详细探讨栈与队列的基本概念、实际应用及其模拟实现。栈和队列在日常开发中的重要性不言而喻,通过对这两种数据结构的深入理解,将助你更加灵活地应对算法题目和工程开发。

在阅读本篇之前,可以先看看stl最基础的部分:

【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
【C++篇】从零实现 C++ Vector:深度剖析 STL 的核心机制与优化


第一章:栈的介绍与使用

1.1 栈的介绍

栈 (Stack) 是一种 后进先出 (LIFO, Last In First Out) 的数据结构。这意味着栈中最后一个被插入的元素会第一个被移出。这种特性使得栈在实现某些算法时非常有用,例如函数调用栈、表达式求值以及括号匹配等。

栈提供的基本操作包括:

  • push():将元素压入栈顶。
  • pop():将栈顶元素弹出。
  • top():获取栈顶元素。
  • empty():检查栈是否为空。
  • size():获取栈中元素的数量。

常见的栈使用场景有表达式求值、深度优先搜索(DFS)以及回溯法。

1.2 栈的使用

1.2.1 最小栈

最小栈 (Min Stack) 是栈的扩展应用,除了提供基本的栈操作外,还能够在常量时间内返回栈中的最小值。下面展示一个最小栈的具体实现。

#include <stack>
using namespace std;class MinStack {
public:// 构造函数MinStack() {}// 将元素 x 压入栈中void push(int x) {    _elem.push(x);  // 元素入栈if (_min.empty() || x <= _min.top()) {  _min.push(x);  // 如果 x 小于等于当前最小值,则将 x 也压入 _min 栈}}// 移除栈顶元素void pop() {if (_min.top() == _elem.top()) {_min.pop();  // 如果当前栈顶元素是最小值,将其从 _min 栈中移除}_elem.pop();}// 获取栈顶元素int top() { return _elem.top(); }// 获取当前栈中的最小值int getMin() { return _min.top(); }private:stack<int> _elem;  // 存储栈中的所有元素stack<int> _min;   // 存储栈中的最小值
};
1.2.2 示例与输出
int main() {MinStack minStack;minStack.push(-2);minStack.push(0);minStack.push(-3);cout << "Current Min: " << minStack.getMin() << endl;  // 输出 -3minStack.pop();cout << "Top: " << minStack.top() << endl;             // 输出 0cout << "Current Min: " << minStack.getMin() << endl;  // 输出 -2return 0;
}

输出结果

Current Min: -3
Top: 0
Current Min: -2

在这个例子中,我们实现了一个最小栈,可以在常量时间内获取栈中的最小值。在压栈和弹栈操作时,我们同步更新 _min 栈以维护最小值。


1.3 栈的模拟实现

栈的标准实现使用 std::stack 容器,但在某些场景下,可以使用 std::vector 来模拟栈的功能。由于栈的所有操作都围绕末端进行,因此 vector 的尾插操作与 stack 类似。

#include <vector>
using namespace std;template <typename T>
class SimulatedStack {
public:// 向栈中压入元素void push(const T& x) {_data.push_back(x);}// 弹出栈顶元素void pop() {_data.pop_back();}// 获取栈顶元素T& top() {return _data.back();}// 检查栈是否为空bool empty() const {return _data.empty();}// 获取栈的大小size_t size() const {return _data.size();}private:vector<T> _data;  // 用于存储栈元素的容器
};

这种模拟实现使用了 vector 的尾插操作,可以高效地模拟栈的行为。


第二章:队列的介绍与使用

2.1 队列的介绍

队列 (Queue) 是一种 先进先出 (FIFO, First In First Out) 的数据结构。这意味着第一个进入队列的元素会第一个被移出。队列通常用于任务调度、广度优先搜索 (BFS) 等场景。

队列的基本操作包括:

  • push():将元素插入队尾。
  • pop():移除队头元素。
  • front():获取队头元素。
  • back():获取队尾元素。
  • empty():检查队列是否为空。
  • size():获取队列中的元素数量。

2.2 队列的使用

以下是队列的基本用法展示,包括插入和删除元素。

#include <queue>
#include <iostream>
using namespace std;int main() {queue<int> q;q.push(1);  // 向队尾插入元素1q.push(2);  // 向队尾插入元素2cout << "Front: " << q.front() << endl;  // 输出队头元素 1cout << "Back: " << q.back() << endl;    // 输出队尾元素 2q.pop();  // 移除队头元素cout << "After pop, Front: " << q.front() << endl;  // 输出新的队头元素 2return 0;
}
2.2.1 示例与输出

输出结果

Front: 1
Back: 2
After pop, Front: 2

在这个例子中,我们展示了队列的 push()pop()front()back() 操作。


2.3 队列的模拟实现

在一些场景中,标准库中的 std::queue 可能无法满足特定需求,我们可以通过其他容器类来模拟实现队列。由于队列需要支持在头部删除和尾部插入的操作,使用 std::list 会比 std::vector 更为高效。list 允许在常数时间内进行头部和尾部的插入与删除操作,因此非常适合用于队列的实现。

下面是一个基于 list 的队列模拟实现:

#include <list>
using namespace std;template <typename T>
class SimulatedQueue {
public:// 向队尾插入元素void push(const T& x) {_data.push_back(x);}// 移除队头元素void pop() {_data.pop_front();}// 获取队头元素T& front() {return _data.front();}// 获取队尾元素T& back() {return _data.back();}// 检查队列是否为空bool empty() const {return _data.empty();}// 获取队列的大小size_t size() const {return _data.size();}private:list<T> _data;  // 用于存储队列元素的容器
};
2.3.1 示例与输出
int main() {SimulatedQueue<int> q;q.push(10);  // 向队尾插入元素q.push(20);cout << "队头: " << q.front() << endl;  // 输出队头元素 10cout << "队尾: " << q.back() << endl;  // 输出队尾元素 20q.pop();  // 移除队头元素cout << "新的队头: " << q.front() << endl;  // 输出新的队头元素 20return 0;
}

输出结果

队头: 10
队尾: 20
新的队头: 20

在这个例子中,SimulatedQueue 模拟了队列的基本功能,包括在队尾插入元素和移除队头元素。


第三章:优先队列的介绍与使用

3.1 优先队列的介绍

优先队列 (Priority Queue) 是一种特殊类型的队列,其中每个元素都关联有一个优先级。优先队列的特点是元素的弹出顺序不再是按照先进先出,而是按照元素的优先级来决定。通常优先队列可以用来模拟堆结构。

在默认情况下,C++ 标准库中的 std::priority_queue 是一个大顶堆,即优先队列中的最大元素会优先弹出。我们也可以通过自定义比较函数来实现小顶堆,从而使得最小元素优先弹出。

优先队列的常见操作包括:

  • push():向优先队列中插入元素。
  • pop():移除优先级最高的元素。
  • top():获取优先级最高的元素。
  • empty():检查优先队列是否为空。
  • size():获取优先队列中的元素数量。

3.2 优先队列的使用

下面展示了如何使用 std::priority_queue 进行优先队列操作。

3.2.1 示例:默认大顶堆
#include <iostream>
#include <queue>
#include <vector>
using namespace std;int main() {priority_queue<int> pq;  // 默认大顶堆pq.push(10);pq.push(5);pq.push(20);cout << "优先级最高的元素: " << pq.top() << endl;  // 输出 20pq.pop();  // 移除优先级最高的元素cout << "新的优先级最高的元素: " << pq.top() << endl;  // 输出 10return 0;
}
3.2.2 示例与输出

输出结果

优先级最高的元素: 20
新的优先级最高的元素: 10

在这个例子中,priority_queue<int> 实现了一个大顶堆,插入元素后,优先级最高的元素(值最大的元素)会优先弹出。

3.2.3 示例:小顶堆

我们也可以使用 std::greater<T> 来改变默认的比较方式,从而实现小顶堆。下面是一个小顶堆的例子:

#include <iostream>
#include <queue>
#include <vector>
using namespace std;int main() {priority_queue<int, vector<int>, greater<int>> pq;  // 小顶堆pq.push(10);pq.push(5);pq.push(20);cout << "优先级最高的元素(最小值): " << pq.top() << endl;  // 输出 5pq.pop();  // 移除优先级最高的元素cout << "新的优先级最高的元素: " << pq.top() << endl;  // 输出 10return 0;
}

输出结果

优先级最高的元素(最小值): 5
新的优先级最高的元素: 10

在这个例子中,priority_queue<int, vector<int>, greater<int>> 实现了一个小顶堆,其中优先级最高的元素是值最小的元素。


3.3 优先队列的模拟实现

优先队列通常是基于堆实现的。在 C++ 中,标准库中的 priority_queue 使用 std::vector 作为底层存储,并通过堆算法管理优先级。在需要自定义优先队列行为时,可以自己实现一个简单的优先队列,利用堆的概念来操作。

下面是一个基于 std::vector 实现的简单优先队列:

#pragma once#include <iostream>
#include <vector>
using namespace std;// priority_queue--->堆
namespace W {// 默认的比较函数为 less,实现大顶堆template<class T>struct less {bool operator()(const T& left, const T& right) {return left < right;}};// greater 实现小顶堆template<class T>struct greater {bool operator()(const T& left, const T& right) {return left > right;}};template<class T, class Container = std::vector<T>, class Compare = less<T>>class priority_queue {public:// 创造空的优先级队列priority_queue() : c() {}// 构造函数支持从迭代器范围初始化template<class Iterator>priority_queue(Iterator first, Iterator last): c(first, last) {// 将 c 中的元素调整成堆的结构int count = c.size();int root = ((count - 2) >> 1);for (; root >= 0; root--)AdjustDown(root);}// 向队列中插入元素void push(const T& data) {c.push_back(data);AdjustUP(c.size() - 1);}// 移除优先级最高的元素void pop() {if (empty())return;swap(c.front(), c.back());c.pop_back();AdjustDown(0);}// 获取优先队列的大小size_t size() const {return c.size();}// 检查优先队列是否为空bool empty() const {return c.empty();}// 返回优先级最高的元素(不允许修改)const T& top() const {return c.front();}private:// 向上调整,维护堆的性质void AdjustUP(int child) {// 计算父节点的索引,等同于 (child - 1) / 2,移位操作符效率更快int parent = ((child - 1) >> 1);while (child) {if (Compare()(c[parent], c[child])) {swap(c[child], c[parent]);child = parent;parent = ((child - 1) >> 1);} else {return;}}}// 向下调整,维护堆的性质void AdjustDown(int parent) {size_t child = parent * 2 + 1;while (child < c.size()) {// 找到父节点较大的孩子if (child + 1 < c.size() && Compare()(c[child], c[child + 1])) {child += 1;}// 检查双亲是否满足堆的条件if (Compare()(c[parent], c[child])) {swap(c[child], c[parent]);parent = child;child = parent * 2 + 1;} else {return;}}}private:Container c;  // 底层容器,默认为 vector};
}

3.3.1 示例与输出
void TestQueuePriority() {W::priority_queue<int> q1;// 向大顶堆中插入元素q1.push(5);q1.push(1);q1.push(4);q1.push(2);q1.push(3);q1.push(6);// 输出堆顶元素cout << "优先级最高的元素: " << q1.top() << endl;  // 输出 6// 弹出两个元素q1.pop();q1.pop();// 再次输出堆顶元素cout << "新的优先级最高的元素: " << q1.top() << endl;  // 输出 4// 使用 greater 创建小顶堆vector<int> v{5, 1, 4, 2, 3, 6};W::priority_queue<int, vector<int>, W::greater<int>> q2(v.begin(), v.end());// 输出小顶堆的堆顶元素cout << "优先级最高的元素(最小值): " << q2.top() << endl;  // 输出 1// 弹出两个元素q2.pop();q2.pop();// 再次输出小顶堆的堆顶元素cout << "新的优先级最高的元素(最小值): " << q2.top() << endl;  // 输出 3
}

输出结果:

优先级最高的元素: 6
新的优先级最高的元素: 4
优先级最高的元素(最小值): 1
新的优先级最高的元素(最小值): 3

在这个模拟实现中,我们使用 std::vector 作为底层容器,并且通过堆排序算法来维护优先队列的顺序。通过 lessgreater 函数对象,我们可以分别实现大顶堆和小顶堆。


第四章:容器适配器

4.1 什么是容器适配器

容器适配器 (Container Adapter) 是一种设计模式,目的是将一种容器包装为另一种接口形式。容器适配器提供了一组特定的成员函数来访问底层的容器。C++ 标准库中,stackqueuepriority_queue 都是容器适配器,它们对容器的操作进行了限制,并定义了特定的访问规则。

在这里插入图片描述

容器适配器本质上是对基础容器的封装,它们可以使用 vectordequelist 等作为底层实现,而具体使用哪种容器可以根据需求进行调整。容器适配器只暴露了某些特定的操作,而底层容器的更多操作则被隐藏。

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque

常见的容器适配器:

  • stack:实现后进先出(LIFO)原则。
    在这里插入图片描述

  • queue:实现先进先出(FIFO)原则。

在这里插入图片描述

  • priority_queue:基于优先级进行元素的弹出,通常是大顶堆。
    在这里插入图片描述

4.2 deque 的简单介绍

双端队列 (deque, Double-Ended Queue) 是一种可以在头尾两端进行高效插入和删除操作的序列式容器。与 vector 类似,deque 提供了动态数组的功能,但它比 vector 更加灵活,允许在头尾两端都进行元素的添加和删除。

在这里插入图片描述

4.2.1 deque 的原理介绍
  • 双端操作deque 提供了双端操作,即允许在容器的两端进行插入和删除操作。其时间复杂度为常数时间 O ( 1 ) O(1) O(1),这使得它比 vector 更适合需要频繁在两端插入或删除元素的场景。
  • 非连续存储:虽然 deque 表面上看起来像是一个连续的数组,但它的底层实现并非真正连续,而是由多块小的连续内存块组合而成,这就允许 deque 在进行元素插入或删除时,不需要像 vector 一样移动大量元素。

下面是一张简化的 deque 的内存布局示意图:

--------------------------------
| Block 1 | Block 2 | Block 3  |
--------------------------------

每个块表示 deque 底层的一部分内存,插入或删除元素时,只需要操作相应块中的数据,而不需要重新分配整个数组的内存。

在这里插入图片描述

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问
的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:

在这里插入图片描述

那deque是如何借助其迭代器维护其假想连续的结构呢?

在这里插入图片描述

了解一下即可


4.2.2 deque 的缺陷

虽然 deque 在插入和删除操作上比 vector 更高效,但它也有一些缺点:

  1. 遍历性能较低:由于 deque 的存储结构不是一个连续的内存块,所以在遍历 deque 时,迭代器需要处理内存块之间的跳转,导致遍历性能不如 vector
  2. 内存利用率稍低:因为 deque 是由多个小内存块组成的,所以它的内存利用率相比 vector 稍差。不过与 list 比较,deque 的内存效率还是更高。
4.2.3 deque 的常见操作
#include <deque>
#include <iostream>
using namespace std;int main() {deque<int> d;// 在队列的两端插入元素d.push_back(10);d.push_back(20);d.push_front(5);cout << "队头: " << d.front() << endl;  // 输出 5cout << "队尾: " << d.back() << endl;   // 输出 20// 删除队列的两端元素d.pop_front();d.pop_back();cout << "新的队头: " << d.front() << endl;  // 输出 10return 0;
}

输出结果

队头: 5
队尾: 20
新的队头: 10

这个示例展示了 deque 如何进行两端的插入和删除操作。可以看到,deque 支持同时在队头和队尾进行高效的操作。


4.3 为什么选择 deque 作为 stack 和 queue 的底层默认容器

C++ 标准库中,stackqueue 的底层容器默认使用 deque,这是因为 deque 在元素插入和删除时的性能优势以及空间利用率较高的特点,正好符合 stackqueue 对容器的需求。

  1. 高效的尾部插入和删除:对于 stack,只需要支持在容器的尾部插入和删除元素,dequepush_back()pop_back() 操作可以在常数时间内完成,比 vector 在扩容时效率更高。
  2. 高效的头部插入和删除:对于 queue,需要在尾部插入元素、在头部删除元素,deque 同时支持 push_back()pop_front() 操作,效率比 list 高,且不需要存储额外的指针信息。

虽然 vector 也可以作为 stack 的底层容器,但它在尾部插入元素时需要在扩容时移动大量元素,因此效率不如 deque。而 list 虽然也支持两端插入删除操作,但由于需要存储额外的指针信息,空间利用率不如 deque 高。因此,deque 被认为是 stackqueue 的默认最佳选择。


4.4 STL 标准库中 stack 和 queue 的模拟实现

4.4.1 stack 的模拟实现

stack 的模拟实现只需要封装一个可以支持末端插入和删除操作的容器,默认情况下,使用 deque 作为底层容器。

#include <deque>namespace W {template <typename T, typename Container = deque<T>>
class stack {
public:stack() {}// 向栈中压入元素void push(const T& x) {_c.push_back(x);}// 弹出栈顶元素void pop() {_c.pop_back();}// 获取栈顶元素T& top() {return _c.back();}// 检查栈是否为空bool empty() const {return _c.empty();}// 获取栈的大小size_t size() const {return _c.size();}private:Container _c;  // 底层容器,默认使用 deque
};
}
4.4.2 queue 的模拟实现

queue 的实现需要支持队尾插入元素、队头删除元素的操作。类似 stackqueue 默认使用 deque 作为底层容器。

#include <deque>namespace W {template <typename T, typename Container = deque<T>>
class queue {
public:queue() {}// 向队尾插入元素void push(const T& x) {_c.push_back(x);}// 移除队头元素void pop() {_c.pop_front();}// 获取队头元素T& front() {return _c.front();}// 获取队尾元素T& back() {return _c.back();}// 检查队列是否为空bool empty() const {return _c.empty();}// 获取队列的大小size_t size() const {return _c.size();}private:Container _c;  // 底层容器,默认使用 deque
};
}

第五章:总结

在本文中,我们详细探讨了 栈 (stack)队列 (queue) 的概念、应用及其实现方式。通过对 dequepriority _queue 的深入理解,我们可以更高效地解决实际编程问题。

5.1 核心要点回顾

  • 栈是一种后进先出的数据结构,常用于表达式求值、函数调用栈等。
  • 队列是一种先进先出的数据结构,广泛应用于任务调度、广度优先搜索等场景。
  • 优先队列根据元素的优先级进行排序,常用于调度和路径优化算法。
  • deque 作为双端队列,支持在头尾两端进行高效的插入和删除操作。
  • 容器适配器 stackqueue 使用 deque 作为底层容器,利用其高效的插入删除操作实现栈和队列的功能。

通过对这些数据结构的深入理解,我们能够在编程中更加灵活、准确地选择合适的工具来解决实际问题。

💬 讨论区:如果你有任何问题,欢迎在评论区留言讨论!
👍 支持一下:如果你觉得这篇文章对你有帮助,请点赞、收藏并分享给更多学习者!


以上就是关于【C++篇】栈的层叠与队列的流动:在 STL 的韵律中探寻数据结构的优雅之舞的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/456867.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue文件报Cannot find module ‘webpack/lib/RuleSet‘错误处理

检查 Node.js 版本&#xff1a;这个问题可能与 Node.js 的版本有关。你可以尝试将 Node.js 的版本切换到 12 或更低。如果没有安装 nvm&#xff08;Node Version Manager&#xff09;&#xff0c;可以通过以下命令安装&#xff1a; curl -o- https://raw.githubusercontent.co…

论文速读:YOLO-G,用于跨域目标检测的改进YOLO(Plos One 2023)

原文标题&#xff1a;YOLO-G: Improved YOLO for cross-domain object detection 中文标题&#xff1a;YOLO-G&#xff1a;用于跨域目标检测的改进YOLO 论文地址&#xff1a; 百度网盘 请输入提取码 提取码&#xff1a;z8h7 代码地址&#xff1a; GitHub - airy975924806/yolo…

【虚幻引擎UE】UE5 音频共振特效制作

UE5 音频共振特效制作 一、基础准备1.插件准备2.音源准备 二、创建共感NRT解析器和设置1.解析器选择依据2. 创建解析器3. 创建解析器设置&#xff08;和2匹配&#xff09;4.共感NRT解析器设置参数调整5.为共感NRT解析器关联要解析的音频和相应设置 三、蓝图控制1.创建Actor及静…

排序(一)插入排序,希尔排序,选择排序,堆排序,冒泡排序

目录 一.排序 1.插入排序 2.希尔排序 3.选择排序 4.堆排序 5.冒泡排序 二.整体代码 1.Sort.h 2.Sort.c 3.test.c 一.排序 1.插入排序 插入排序基本思想:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中&#xff0c;直到所有的记录插入完为 止…

计算机网络原理总结C-网络层

网络层 网络层提供的两种服务网际协议IP 虚拟互连网络IP地址子网掩码&#xff08;无分类编址CIDR&#xff09;IP地址和MAC地址IP数据报格式&#xff08;路由&#xff09;转发分组的流程 因特网的路由选择协议&#xff08;动态路由协议&#xff09; 网际控制报文协议ICMPIP多播…

纯血鸿蒙的最难时刻才开始

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 纯血鸿蒙(HarmonyOS NEXT)也正式发布了&#xff0c;绝对是一个历史性时刻&#xff0c;但最难的鸿蒙第二个阶段&#xff0c;也就是生态圈的建设&#xff0c;才刚刚开始。 目前&#xff0c;我劝你现在不要升级到鸿蒙…

最新版本jdbcutils集成log4j做详细sql日志、自动释放连接...等

maven坐标 <!-- MySQL 8 --><dependency><groupId>com.mysql</groupId><artifactId>mysql-connector-j</artifactId><version>8.0.33</version></dependency><!-- Druid连接池 --><dependency><groupId&…

软考中级嵌入式系统设计师笔记分享(二)

1.TTL 电路是电流控制器件&#xff0c;而CMOS 电路是电压控制器件。 2.TTL 电路的速度快&#xff0c;传输延迟时间短(5-10ns)&#xff0c;但是功耗大。 常见的串行总线有 SPI、II2C、USB、RS232/RS422/RS485、CAN等;高速串行总线主要有 SATA、PCIE、IEEE 1394、Rapidl0、USB 3…

C# Unity 同步/异步编程和多线程什么关系?async/await和coroutine又是什么?

目录 不用模板生成的目录怎么这么丑啊 1.同步&#xff1f;异步&#xff1f;多线程&#xff1f; 2.async/await和coroutine&#xff1f; 证明 单线程中的同步/异步 同 异 多线程中的同步异步 同 异 1.同步&#xff1f;异步&#xff1f;多线程&#xff1f; 首先&#…

模型选择拟合

1.通过多项式拟合交互探索概念 import math import numpy as np import torch from torch import nn from d2l import torch as d2l 2.使用三阶多项式来生成训练和测试数据的标签 max_degree 20 # 多项式的最大阶数 n_train, n_test 100, 100 # 训练和测试数据集大小 true…

手动改造UPX壳,增加IAT保护

随便拿Delphi7&#xff0c;新建一个VCL窗体程序&#xff0c;画一个按钮&#xff0c;写两行代码。这一步骤讲究的是什么呢&#xff1f;率性而为&#xff0c;反正没什么卵用。比如&#xff0c;俺写的是这玩意。 <span style"color:#666666"><span style"…

FFMPEG+Qt 实时显示本机USB摄像头1080p画面以及同步录制mp4视频

FFMPEGQt 实时显示本机USB摄像头1080p画面以及同步录制mp4视频 文章目录 FFMPEGQt 实时显示本机USB摄像头1080p画面以及同步录制mp4视频1、前言1.1 目标1.2 一些说明 2、效果3、代码3.1 思路3.2 工程目录3.3 核心代码 4、全部代码获取 1、前言 本文通过FFMPEG(7.0.2)与Qt(5.13.…

YOLO系列入门:1、YOLO V11环境搭建

YOLO了解 yolo检测原理 yolo是目标检测模型&#xff0c;目标检测包含物体分类、位置预测两个内容。目前yolo的开发公司官网为&#xff1a;https://docs.ultralytics.com/zh截止到目前2024年10月&#xff0c;最新的是yolo11。关于YOLO的介绍可以参考这篇文章&#xff1a;https…

Python+Django+VUE 搭建深度学习训练界面 (持续ing)

PythonDjangoVUE 搭建深度学习训练界面 &#xff08;持续ing&#xff09; 环境说明 Pycharm 专业版2024.1.4&#xff0c;社区版不支持网页开发 下载链接&#xff1a;https://www.jetbrains.com/pycharm/download/other.html 参考链接&#xff1a;https://www.quanxiaoha.co…

es实现桶聚合

目录 聚合 聚合的分类 DSL实现桶聚合 dsl语句 结果 聚合结果排序 限定聚合范围 总结 聚合必须的三要素&#xff1a; 聚合可配置的属性 DSL实现metric聚合 例如&#xff1a;我们需要获取每个品牌的用户评分的min,max,avg等值 只求socre的max 利用RestHighLevelClien…

BIO,NIO,直接内存,零拷贝

前置知识 什么是Socket&#xff1f; Socket是应用层与TCP/IP协议族通信的中间软件抽象层&#xff0c;它是一组接口&#xff0c;一般由操作系统提供。在设计模式中&#xff0c;Socket其实就是一个门面模式&#xff0c;它把复杂的TCP/IP协议处理和通信缓存管理等等都隐藏在Sock…

vue3使用i18n做国际化多语言,实现常量跟随语言切换翻译

因为我有一个常量的配置文件在项目中&#xff0c;而且有中文内容&#xff0c;我想在切换语言的时候&#xff0c;跟着这个翻译也实时切换&#xff0c;就可以使用computed计算属性实现。 把name改成下面的样子&#xff1a; name: computed(() > t(pad.regularMode)), 就可以…

分享一款录屏、直播软件

光音录屏 光音录屏 是新一代的录屏工具&#xff0c;跟传统录屏工具相比&#xff0c;它不仅可以录制屏幕&#xff0c;还可以同时录制「人像 屏幕」&#xff0c;此外它还提供了美颜、虚拟背景、绿幕抠像、图片、文本编辑、字幕、白板等更多高级功能。你可以将录制好的视频&…

ue5实现数字滚动增长

方法1 https://www.bilibili.com/video/BV1h14y197D1/?spm_id_from333.999.0.0 b站教程 重写loop节点 方法二 写在eventtick里

ffmpeg视频滤镜: 色温- colortemperature

滤镜简述 colortemperature 官网链接 》 FFmpeg Filters Documentation 这个滤镜可以调节图片的色温&#xff0c;色温值越大显得越冷&#xff0c;可以参考一下下图&#xff1a; 咱们装修的时候可能会用到&#xff0c;比如选择灯还有地板的颜色的时候&#xff0c;选暖色调还是…