【STM32】单片机ADC原理详解及应用编程

本篇文章主要详细讲述单片机的ADC原理和编程应用,希望我的分享对你有所帮助!

目录

 一、STM32ADC概述

1、ADC(Analog-to-Digital Converter,模数转换器)

2、STM32工作原理  

 二、STM32ADC编程实战

(一)、ADC开发的寄存器库函数

(二)、ADC开发的HAL库

(三)、实战工程 

1、ADC单通道采集

2、ADC多通道采集

三、结语 


一、STM32ADC概述

1、ADC(Analog-to-Digital Converter,模数转换器)

STM32的ADC(Analog-to-Digital Converter,模拟数字转换器)是STM32微控制器系列中集成的一种功能强大的模块,用于将模拟信号转换为数字信号。STM32微控制器广泛应用于嵌入式系统,ADC模块在许多应用场景中都至关重要,例如传感器读取、信号处理和控制系统。

模拟量(Analog Quantity)是指在一个连续范围内可以取任意值的物理量。这种物理量的值可以是任意的实数,通常用来表示那些变化是渐进的、连续的特征,而不是离散的。

  • 模拟量:可以在一个连续的范围内变化,例如温度可以是25.1°C、25.2°C等,具有无限个可能值。
  • 数字量:只能取有限的离散值,例如开关的开(1)和关(0)状态,或者数字传感器读取的值。

在许多应用中,模拟量需要转换为数字量以便进行处理,这通常通过模数转换器(ADC)实现。转换后,计算机或微控制器能够以数字形式读取和处理这些信号。

ADC转换模式: 

  1. 单次转换模式(Single Conversion Mode):ADC在每次触发时只进行一次转换。适用于低速、低功耗的应用。

  2. 连续转换模式(Continuous Conversion Mode):ADC持续进行转换,适用于需要实时监测的应用,如信号处理和实时数据采集。

  3. 扫描模式(Scan Mode):ADC可以在多个通道间进行扫描,每个通道依次进行转换,适合多通道数据采集。

  4. 触发模式(Triggered Mode):转换过程由外部信号触发,可以是定时器、GPIO引脚等,适合需要同步数据采集的场景。

  5. 差分模式(Differential Mode):ADC测量两个输入信号的差值,提供更高的噪声抗性,适用于高精度测量。

  6. 伪差分模式(Pseudo-Differential Mode):其中一个输入端连接到地,另一端测量信号,适合简单的差分测量。

在ADC(模数转换器)的应用中,通道组可以分为规则通道组(Regular Channel Group)和注入通道组(Injected Channel Group)。这两种通道组的主要区别在于它们的工作方式、优先级以及使用场景。 

规则通道组(Regular Channel Group)

  • 定义:规则通道组是ADC的主要通道组,用于常规的信号采集。它通常用于周期性采集的传感器信号。

  • 特点

    • 持续转换:在连续转换模式下,规则通道组可以在多个通道间进行循环采样。
    • 优先级低:相较于注入通道组,规则通道组的优先级较低,通常用于常规数据的采集。
    • 数据存储:转换结果通常存储在一个数据寄存器中,等待主程序读取。
    • 触发方式:可以通过定时器、外部事件等方式触发采样。
  • 适用场景:适用于需要实时采集且对响应时间要求不高的应用,如环境监测、温度传感器等。

注入通道组(Injected Channel Group)

  • 定义:注入通道组用于优先级更高的信号采集,通常用于突发事件或特定条件下的快速采样。

  • 特点

    • 高优先级:注入通道组具有较高的优先级,能够在任何时候中断规则通道组的采样进行数据采集。
    • 快速响应:适合快速响应的应用,如检测瞬时信号变化、故障检测等。
    • 独立触发:可以独立于规则通道组进行触发,支持多种触发源(如外部引脚、内部事件等)。
    • 多个通道:通常可以配置多个注入通道,进行快速的信号采样。
  • 适用场景:适用于需要在特定条件下迅速采集信号的应用,如运动控制、脉冲信号采集等。

2、STM32工作原理  

STM32包含1~3个12位逐次逼近型的模拟数字转换器。每个ADC最多有18个通道,可测量16个外部信号源和2个内部信号源。各通道的A/D转换可以单次、连续、扫描或间断模式执行,有规则通道组注入通道组,每次转换结束可产生中断。转换的结果可以左对齐或右对齐方式存储在16位数据寄存器中。

1)STM32F103C8T6有2个ADC,ADC1和ADC2。记为ADCx。

2)每个ADC有18个通道。16个外部信号源测量通道ADCx_IN0~ADCx_IN15,2个内部信号源测量通道。信号源引脚对应如下:

ADC的工作过程一般包括以下几个步骤:

  1. 采样:在某个时间点上对模拟信号进行测量,获取其电压值。
  2. 量化:将模拟信号的电压值与ADC的参考电压进行比较,将其转换为相应的数字值。
  3. 编码:将量化后的结果编码为二进制形式,输出给后续的数字电路或处理器。

ADC工作原理思维导图概况如下:

STM32F103ADC时钟和采样时间

1、时钟源

  • STM32F103 的 ADC 通常由 APB2 总线时钟提供时钟。ADC 的最大工作频率为 14 MHz
  • 你需要配置 APB2 时钟(通常通过时钟配置寄存器进行配置)以确保 ADC 的工作频率在合适范围内。

2、ADC 时钟设置

  • ADC 时钟的配置可以通过配置系统时钟(HSE、HSI 或 PLL)来实现。通常在系统初始化时设置。
  • 在 ADC 模块中,可以通过寄存器设置 ADC 的预分频系数,以确保 ADC 时钟不超过最大工作频率。

3、采样时间配置

  • STM32F103 的 ADC 允许用户根据输入信号的特性选择不同的采样时间。可选的采样时间设置包括:

    • 1.5 个 ADC 时钟周期
    • 7.5 个 ADC 时钟周期
    • 13.5 个 ADC 时钟周期
    • 28.5 个 ADC 时钟周期
    • 41.5 个 ADC 时钟周期
    • 55.5 个 ADC 时钟周期
    • 71.5 个 ADC 时钟周期
    • 239.5 个 ADC 时钟周期
  • 通过设置 ADC 寄存器中的采样时间字段,可以选择合适的采样时间。例如,对于快速变化的信号,可能选择较短的采样时间;而对于慢变化的信号,较长的采样时间可以提高测量的准确性。

4、采样时间与转换时间的关系

  • 采样时间加上转换时间组成了每次 ADC 转换的总时间。转换时间对于 STM32F103 的 ADC 是固定的,大约为 1.5 个 ADC 时钟周期

  • 因此,总的转换时间公式可以表示为:

    总时间=采样时间+1.5xADC时钟周期

 二、STM32ADC编程实战

在编程实战之前,让我们先来了解一下ADC开发相关的库函数。

(一)、ADC开发的寄存器库函数

1. ADC初始化函数

void ADC_Init(ADC_TypeDef *ADCx, ADC_InitTypeDef *ADC_InitStruct)

  • 功能:初始化指定的ADC外设。

  • 参数

    • ADC_TypeDef *ADCx:指向ADC外设的指针(如ADC1ADC2)。

    • ADC_InitTypeDef *ADC_InitStruct:指向ADC初始化结构的指针,包含ADC配置参数。

  • 用途:设置ADC的基本参数,如分辨率、对齐方式、时钟分频等。

2. 配置ADC通道

void ADC_RegularChannelConfig(ADC_TypeDef *ADCx, uint32_t Channel, uint32_t Rank, uint32_t SamplingTime)

  • 功能:配置ADC的常规通道。

  • 参数

    • ADC_TypeDef *ADCx:指向ADC外设的指针。

    • uint32_t Channel:选择要配置的ADC通道。

    • uint32_t Rank:在转换序列中的排名。

    • uint32_t SamplingTime:采样时间配置。

  • 用途:配置ADC通道以供后续的采样和转换。

3. 启动和停止ADC转换

void ADC_Cmd(ADC_TypeDef *ADCx, FunctionalState NewState)

  • 功能:启用或禁用指定的ADC外设。

  • 参数

    • ADC_TypeDef *ADCx:指向ADC外设的指针。

    • FunctionalState NewState:功能状态,选择ENABLEDISABLE

  • 用途:控制ADC的开启和关闭。

void ADC_StartConversion(ADC_TypeDef *ADCx)

  • 功能:开始ADC的转换。

  • 参数

    • ADC_TypeDef *ADCx:指向ADC外设的指针。

  • 用途:启动ADC转换过程。

4. 读取ADC转换结果

uint16_t ADC_GetConversionValue(ADC_TypeDef *ADCx)

  • 功能:获取ADC的转换结果。

  • 参数

    • ADC_TypeDef *ADCx:指向ADC外设的指针。

  • 返回值:返回ADC转换后的数值。

  • 用途:读取转换完成后的结果。

5. 配置DMA支持

void ADC_DMACmd(ADC_TypeDef *ADCx, FunctionalState NewState)

  • 功能:启用或禁用ADC的DMA功能。

  • 参数

    • ADC_TypeDef *ADCx:指向ADC外设的指针。

    • FunctionalState NewState:功能状态,选择ENABLEDISABLE

  • 用途:在使用DMA传输ADC数据时配置DMA。

6. 中断支持

void ADC_ITConfig(ADC_TypeDef *ADCx, uint32_t ADC_IT, FunctionalState NewState)

  • 功能:启用或禁用ADC中断。

  • 参数

    • ADC_TypeDef *ADCx:指向ADC外设的指针。

    • uint32_t ADC_IT:选择中断源。

    • FunctionalState NewState:功能状态,选择ENABLEDISABLE

  • 用途:控制ADC的中断行为。

7. 中断回调函数

在使用中断时,需要定义回调函数以处理ADC转换完成的事件。

void ADC1_2_IRQHandler(void) {if (ADC_GetITStatus(ADC1, ADC_IT_EOC) != RESET) {// 处理ADC转换完成uint16_t adcValue = ADC_GetConversionValue(ADC1);// 清除中断标志ADC_ClearITPendingBit(ADC1, ADC_IT_EOC);}
}

(二)、ADC开发的HAL库

1. ADC初始化函数

HAL_ADC_Init()

  • 功能:初始化ADC外设。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针,结构体中包含ADC的配置参数。

  • 返回值:HAL库返回状态,通常为HAL_OK(成功)或错误代码。

  • 用途:设置ADC的基本参数,如分辨率、对齐方式、扫描模式等。

2. ADC通道配置函数

HAL_ADC_ConfigChannel()

  • 功能:配置指定的ADC通道。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针。

    • ADC_ChannelConfTypeDef *sConfig:指向通道配置结构的指针,包含通道选择、采样时间等。

  • 返回值:HAL库返回状态,通常为HAL_OK(成功)或错误代码。

  • 用途:设置通道的采样时间和输入模式等参数。

3. 启动和停止ADC转换

HAL_ADC_Start()

  • 功能:启动ADC转换。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针。

  • 返回值:HAL库返回状态。

  • 用途:使ADC开始进行转换。

HAL_ADC_Stop()

  • 功能:停止ADC转换。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针。

  • 返回值:HAL库返回状态。

  • 用途:结束ADC转换过程,释放资源。

4. 读取ADC转换结果

HAL_ADC_PollForConversion()

  • 功能:等待ADC转换完成(轮询方式)。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针。

    • uint32_t Timeout:等待超时的时间(单位:毫秒)。

  • 返回值:HAL库返回状态,通常为HAL_OK(成功)或超时错误代码。

  • 用途:在转换过程中进行轮询,直到转换完成。

HAL_ADC_GetValue()

  • 功能:获取ADC转换结果。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针。

  • 返回值:ADC的转换结果。

  • 用途:在转换完成后读取结果值。

5. DMA支持

HAL_ADC_Start_DMA()

  • 功能:启动ADC转换并通过DMA传输数据。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针。

    • uint32_t *pData:指向存储结果的缓冲区指针。

    • uint32_t Length:缓冲区的长度。

  • 返回值:HAL库返回状态。

  • 用途:使用DMA提高数据传输效率。

6. 中断支持

HAL_ADC_Start_IT()

  • 功能:启动ADC转换并使能中断。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针。

  • 返回值:HAL库返回状态。

  • 用途:在需要中断处理的应用中使用。

7. 中断回调函数

HAL_ADC_ConvCpltCallback()

  • 功能:ADC转换完成时的回调函数。

  • 参数:

    • ADC_HandleTypeDef *hadc:指向ADC句柄的指针。

  • 用途:在此函数中处理转换结果。

(三)、实战工程 

1、ADC单通道采集

#include "stm32f10x.h"                  // 引入 STM32F10x 设备头文件,包含特定于设备的定义和功能// 初始化 ADC (模数转换器)
void AD_Init(void)
{// 使能 ADC1 的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);// 使能 GPIOA 的时钟,以便配置 GPIO 引脚RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);// 配置 ADC 时钟为 PCLK2 的 1/6RCC_ADCCLKConfig(RCC_PCLK2_Div6);// 定义一个 GPIO 初始化结构体GPIO_InitTypeDef GPIO_InitStructure;// 设置引脚模式为模拟输入GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;// 设置要配置的引脚为 PA0GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;// 设置 GPIO 引脚的速度为 50MHzGPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;// 初始化 GPIOAGPIO_Init(GPIOA, &GPIO_InitStructure);// 配置 ADC 的常规通道,设置通道为 ADC_Channel_0,序列为 1,采样时间为 55.5 个周期ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);// 定义一个 ADC 初始化结构体ADC_InitTypeDef ADC_InitStructure;// 设置 ADC 工作模式为独立模式ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;// 设置数据对齐方式为右对齐ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;// 设置外部触发转换为无ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;// 设置连续转换模式为禁用ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;// 设置扫描模式为禁用ADC_InitStructure.ADC_ScanConvMode = DISABLE;// 设置转换通道数量为 1ADC_InitStructure.ADC_NbrOfChannel = 1;// 初始化 ADC1ADC_Init(ADC1, &ADC_InitStructure);// 使能 ADC1ADC_Cmd(ADC1, ENABLE);// 复位 ADC 校准寄存器ADC_ResetCalibration(ADC1);// 等待复位完成while (ADC_GetResetCalibrationStatus(ADC1) == SET);// 开始 ADC 校准ADC_StartCalibration(ADC1);// 等待校准完成while (ADC_GetCalibrationStatus(ADC1) == SET);
}// 获取 ADC 转换值的函数
uint16_t AD_GetValue(void)
{// 启动软件触发的 ADC 转换ADC_SoftwareStartConvCmd(ADC1, ENABLE);// 等待转换完成标志位设置while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);// 返回 ADC 转换结果return ADC_GetConversionValue(ADC1);
}

2、ADC多通道采集

#include "stm32f10x.h"                  // 引入 STM32F10x 设备头文件,包含特定于设备的定义和功能// 初始化 ADC (模数转换器)
void AD_Init(void)
{// 使能 ADC1 的时钟,确保 ADC1 可以正常工作RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);// 使能 GPIOA 的时钟,以便配置 GPIO 引脚用于 ADCRCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);// 配置 ADC 时钟为 PCLK2 的 1/6RCC_ADCCLKConfig(RCC_PCLK2_Div6);// 定义一个 GPIO 初始化结构体,用于设置 GPIO 的模式和速度GPIO_InitTypeDef GPIO_InitStructure;// 设置 GPIO 模式为模拟输入 (AIN)GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;// 设置要配置的引脚为 PA0, PA1, PA2 和 PA3GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;// 设置 GPIO 引脚的速度为 50MHzGPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;// 初始化 GPIOA,应用上面的配置GPIO_Init(GPIOA, &GPIO_InitStructure);// 定义一个 ADC 初始化结构体,用于配置 ADC 参数ADC_InitTypeDef ADC_InitStructure;// 设置 ADC 工作模式为独立模式ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;// 设置数据对齐方式为右对齐ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;// 设置外部触发转换为无(软件触发)ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;// 设置连续转换模式为禁用ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;// 设置扫描模式为禁用ADC_InitStructure.ADC_ScanConvMode = DISABLE;// 设置转换通道数量为 1ADC_InitStructure.ADC_NbrOfChannel = 1;// 初始化 ADC1,应用上面的配置ADC_Init(ADC1, &ADC_InitStructure);// 使能 ADC1ADC_Cmd(ADC1, ENABLE);// 复位 ADC 校准寄存器ADC_ResetCalibration(ADC1);// 等待复位完成while (ADC_GetResetCalibrationStatus(ADC1) == SET);// 开始 ADC 校准ADC_StartCalibration(ADC1);// 等待校准完成while (ADC_GetCalibrationStatus(ADC1) == SET);
}// 获取指定 ADC 通道的转换值
uint16_t AD_GetValue(uint8_t ADC_Channel)
{// 配置 ADC 通道,设置通道、序列和采样时间ADC_RegularChannelConfig(ADC1, ADC_Channel, 1, ADC_SampleTime_55Cycles5);// 启动软件触发的 ADC 转换ADC_SoftwareStartConvCmd(ADC1, ENABLE);// 等待转换完成标志位设置while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);// 返回 ADC 转换结果return ADC_GetConversionValue(ADC1);
}

三、结语 

关于STM32单片机的ADC原理及编程实现就分享到此了,希望我的分享对你有所帮助!

关于以上工程的源代码,大家可以私信我,收到后我会第一时间回复!也可以回复“STM32ADC”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/458171.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue文件转AST,并恢复成vue文件(适用于antdv版本升级)

vue文件转AST,并恢复成vue文件---antdvV3升级V4 vue文件转AST,重新转回原文件过程如何获取项目路径读取项目文件,判断文件类型分别获取vue文件 template js(vue2和vue3)处理vue 文件template部分处理vue script部分uti…

<<机器学习实战>>15-26节笔记:逻辑回归参数估计、梯度下降及优化、模型评价指标

梯度下降缺点:有可能有鞍点(如果不是凸函数的时候),不一定能找到最小值解决方法:随机梯度下降(选一条数据)和小批量梯度下降(选几条数据这两个解决方法又会带来新问题,比…

机器视觉-相机、镜头、光源(总结)

目录 1、机器视觉光源概述 2、光源的作用 3、光谱 4、工业场景常见光源 4.1、白炽灯 4.2、卤素灯 4.3、 荧光灯 4.4、LED灯 4.5、激光灯 5、光源的基本性能 5.1、光通量 5.2、光效率 5.3、发光强度 5.4、光照度 5.5、均匀性 5.6、色温 5.7、显色性 6、基本光学…

2024年信息化管理与计算技术研讨会 (ICIMCT 2024)--分会场

目录 重要信息 大会简介 荣誉主席 主讲嘉宾 征稿主题 会议日程 参会方式 重要信息 大会时间:2024年11月15-17日 大会地点:中国-成都 大会官网: http://www.icbar.net/ 大会简介 2024年信息化管理与计算技术研讨会 (ICIMCT 2024)为…

JAVA基础:集合 (学习笔记)

集合 什么是集合? 一种引用数据类型,可以存储多个数据 为什么要学习集合? 数组的缺点: (1)空间长度不可以改变。 (2)没办法获得数组中真实的元素个数。 (3&#xff…

【Android】perfetto使用学习

在开发者选项中的系统跟踪里抓取的perfetto文件是保存在/data/local/traces 里的 adb pull /data/local/traces ./ 主线程中的执行是受vsync信号控制的,即间隔调用的 如果写一个while线程,一直使用cpu,是怎样的呢,这里我们来试验一…

asp.net core 入口 验证token,但有的接口要跳过验证

asp.net core 入口 验证token,但有的接口要跳过验证 在ASP.NET Core中,你可以使用中间件来验证token,并为特定的接口创建一个属性来标记是否跳过验证。以下是一个简化的例子: 创建一个自定义属性来标记是否跳过验证: public clas…

【算法】递归系列:206.反转链表(两种递归实现)

目录 1、题目链接 2、题目介绍 3、解法 递归法(从前往后递归) 从后往前递归 4、代码 递归法(从前往后递归) 从后往前递归 1、题目链接 206.反转链表 2、题目介绍 3、解法 递归法(从前往后递归) 递归…

OpenIPC开源FPV之Ardupilot配置

OpenIPC开源FPV之Ardupilot配置 1. 源由2. 问题3. 分析3.1 MAVLINK_MSG_ID_RAW_IMU3.2 MAVLINK_MSG_ID_SYS_STATUS3.3 MAVLINK_MSG_ID_BATTERY_STATUS3.4 MAVLINK_MSG_ID_RC_CHANNELS_RAW3.5 MAVLINK_MSG_ID_GPS_RAW_INT3.6 MAVLINK_MSG_ID_VFR_HUD3.7 MAVLINK_MSG_ID_GLOBAL_P…

基于rk356x u-boot版本功能分析及编译相关(二)

🎏技术驱动源于热爱,祝各位学有所成。 文章目录 build.sh脚本分析make.sh编译脚本分析接上,rk3568的u-boot编译在 基于rk356x u-boot版本功能分析及编译相关(一)已有描述,下面针对编译脚本进行分析,在编译之前都进行了哪些工作。 build.sh脚本分析 在编译目录下执行…

二叉树与堆的实现

一 . 概念与结构 在树的概念与结构中树的概念与结构-CSDN博客, 我们发现子结点可以为 0 或者是更多 , 结构较为复杂 , 然后把树的结点个数 加个限制条件 --> 不能超过 2 --> 我们引出了二叉树,在实际运用广 且高效 &#xf…

springboot-springboot官方文档架构

spring官网 >project:spring项目列表,包含了spring一系列框架的List >springboot(也可以换成其他框架):springboot框架 >learn:显示这个框架的各个版本的reference doc和api doc >某版本的reference doc © 著作权归作者所有…

提示工程(Prompt Engineering)指南(进阶篇)

在 Prompt Engineering 的进阶阶段,我们着重关注提示的结构化、复杂任务的分解、反馈循环以及模型的高级特性利用。随着生成式 AI 技术的快速发展,Prompt Engineering 已经从基础的单一指令优化转向了更具系统性的设计思维,并应用于多轮对话、…

【gRPC】什么是RPC——介绍一下RPC

说起RPC,博主使用CPP手搓了一个RPC项目,RPC简单来说,就是远程过程调用:我们一般在本地传入数据进行执行函数,然后返回一个结果;当我们使用RPC之后,我们可以将函数的执行过程放到另外一个服务器上…

基于python的马尔可夫模型初识

基于python的马尔可夫模型初识 **1.什么是随机过程?****1.1模拟赌徒的毁灭Gamblers Ruin** **2.马尔可夫链(Markov Chains)****2.1马尔可夫链模拟****2.2马尔可夫转移概率图****2.3无记忆性:给定现在,未来独立于过去****2.4 n n n 步转移矩阵…

Python金色流星雨

系列目录 序号直达链接爱心系列1Python制作一个无法拒绝的表白界面2Python满屏飘字表白代码3Python无限弹窗满屏表白代码4Python李峋同款可写字版跳动的爱心5Python流星雨代码6Python漂浮爱心代码7Python爱心光波代码8Python普通的玫瑰花代码9Python炫酷的玫瑰花代码10Python多…

Python图像处理——基于ResNet152的人脸识别签到系统(Pytorch框架)

(1)数据集制作 本次使用明星做为数据集,首先编写爬虫函数,根据关键字爬取对应的明星,爬取结果保存至data文件夹,并以标签名作为文件名。具体爬取的明星如下: 注:实际应用中&#xf…

linux下gpio模拟spi三线时序

目录 前言一、配置内容二、驱动代码实现三、总结 前言 本笔记总结linux下使用gpio模拟spi时序的方法,基于arm64架构的一个SOC,linux内核版本为linux5.10.xxx,以驱动三线spi(时钟线sclk,片选cs,sdata数据读和写使用同一…

华为鸿蒙HarmonyOS应用开发者高级认证视频及题库答案

华为鸿蒙开发者高级认证的学习资料 1、课程内容涵盖HarmonyOS系统介绍、DevEco Studio工具使用、UI设计与开发、Ability设计与开发、分布式特性、原子化服务卡片以及应用发布等。每个实验都与课程相匹配,帮助加深理解并掌握技能 2、学习视频资料 华为HarmonyOS开发…

Minio文件服务器:SpringBoot实现文件上传

在Minio文件服务器部署成功后(参考上篇文章Minio文件服务器:安装)接下来我们通过SpringBoot框架写一个接口,来实现文件的上传功能:文件通过SpringBoot接口,上传到Minio文件服务器。并且,如果上传的文件是图片类型&…