【传知代码】短期电力负荷(论文复现)

🍑个人主页:Jupiter.
🚀 所属专栏:传知代码
欢迎大家点赞收藏评论😊

在这里插入图片描述

在这里插入图片描述

目录

  • 备注
    • 前言介绍
    • 问题背景
    • 复现:
      • 一. 多维特征提取的提取框架:
      • 二. 论文中进行性能测试的MultiTag2Vec-STLF模型:
      • 三. 与整数编码(IE)的特征处理方法进行对比
    • 部署方式


备注

  • 需要本文的详细复现过程的项目源码、数据和预训练好的模型可从该地址处获取完整版:地址跳转

前言介绍

  • 短期电力负荷技术是对未来几小时或一天内电力系统负荷变化进行预测的技术。该技术通过收集和分析历史负荷数据及相关影响因素,运用时间序列分析、回归分析、神经网络、支持向量机等数学模型和方法,对电力负荷进行精确预测。短期电力负荷预测对于电力系统运行和调度至关重要,有助于电力企业制定合理的发电和输电计划,保障电网的安全稳定运行,降低运行成本,提高供电质量和经济效益。

问题背景

一. 基本问题

  • 短期电力负荷预测(STLF),即对未来几小时到几周的电力负荷进行准确预测。

二. 本论文发现的问题

  • 在电力负荷预测中,由于数据的高维性和波动性,传统的特征提取方法往往难以捕捉到负荷数据中的复杂模式和关系。

对于论文发现问题的解决方案:
在这里插入图片描述
本论文通过提出一个名为MultiTag2Vec的特征提取框架来解决短期电力负荷预测(STLF)中的特征工程问题。该框架包括两个主要过程:标记(tagging)和嵌入(embedding)。

  • 标记过程:首先,通过从高维时间序列数据中提取关键信息,将电气负荷数据转换成紧凑形式。这一步通过聚类子序列来发现重复出现的模式,并为每个模式分配唯一的标签,从而实现数据的标记。

  • 嵌入过程:接下来,通过学习标签序列中的时间和维度关系来提取特征。为了捕捉这些关系,提出了一个带有卷积层的网络模型,该模型采用数学分析设计的多输出结构。通过训练,可以从任何任意多维标签中提取特征。

复现:

一. 多维特征提取的提取框架:

  • 时间序列切分,聚类,打标签
def segment_time_series(X, T):"""将时间序列 X 分段为长度为 T 的子序列。X: 多元时间序列 (N x D), N 为时间序列长度, D 为维度数T: 每个子序列的长度返回: 分段后的子序列集合,形状为 (N_segment, T, D)"""N, D = X.shapeN_segment = N // T  # 计算分段后的子序列数量segments = np.array([X[i*T:(i+1)*T] for i in range(N_segment)])return segments# 2. 模式发现
def discover_patterns(segments, K):"""对分段后的子序列进行聚类,提取模式。segments: 分段后的子序列集合, 形状为 (N_segment, T, D)K: 聚类的数量,即模式的数量返回: 每个维度的模式集合,形状为 (K, T, D)"""N_segment, T, D = segments.shapepatterns = []# 对每个维度单独进行聚类for d in range(D):# 提取第 d 个维度的所有子序列data_d = segments[:, :, d]  # 形状为 (N_segment, T)# 使用 KMeans 进行聚类kmeans = KMeans(n_clusters=K, random_state=42)kmeans.fit(data_d)# 保存聚类中心(模式)patterns.append(kmeans.cluster_centers_)# patterns 为 D 维的聚类中心集合,形状为 (D, K, T)return np.array(patterns)# 3. 数据标记
def tag_data(segments, patterns):"""对每个子序列打标签,标签为距离最近的聚类中心。segments: 分段后的子序列集合, 形状为 (N_segment, T, D)patterns: 每个维度的聚类中心集合,形状为 (D, K, T)返回: 每个子序列的标签集合,形状为 (N_segment, D)"""N_segment, T, D = segments.shapeK = patterns.shape[1]  # 模式的数量labels = np.zeros((N_segment, D), dtype=int)# 对每个维度进行标记for d in range(D):for i in range(N_segment):# 计算当前子序列与所有聚类中心的距离distances = np.linalg.norm(segments[i, :, d] - patterns[d], axis=1)# 选择最小距离的聚类中心的标签labels[i, d] = np.argmin(distances)return labels
  • 嵌入网络定义:
class EmbeddingNetwork(nn.Module):def __init__(self, D, K, M):super(EmbeddingNetwork, self).__init__()# 卷积层,用于提取输入张量的特征self.conv = nn.Conv2d(in_channels=D, out_channels=M, kernel_size=(1, K), stride=1)  self.pool = nn.AdaptiveAvgPool2d((1, 1))# 两个并行的全连接层,用于预测两个维度的输出标签self.fc1 = nn.Linear(M, K)self.fc2 = nn.Linear(M, K)def forward(self, x):# 卷积层print(x.shape)x = self.conv(x)  # 卷积操作print(x.shape)x = self.pool(x)  # 使用自适应平均池化,将每个样本缩减为大小为 (M, 1)print(x.shape)x = x.view(x.size(0), -1)  # 展平张量,形状变为 (batch_size, M)# 两个并行的全连接层output1 = self.fc1(x)  # 维度1的输出output2 = self.fc2(x)  # 维度2的输出# 将两个输出拼接在一起,形成最后的输出output = torch.stack((output1, output2), dim=1)return output

二. 论文中进行性能测试的MultiTag2Vec-STLF模型:

class FeatureExtractor(nn.Module):def __init__(self, embedding_network):super(FeatureExtractor, self).__init__()self.conv = embedding_network.convdef forward(self, x):x = self.conv(x)  # 卷积层x = x.view(x.size(0), -1)  # 展平张量return x# 初始化特征提取器
feature_extractor = FeatureExtractor(embedding_network)# 4. 定义 MultiTag2Vec-STLF 模型
class MultiTag2VecSTLF(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim, feature_extractor):super(MultiTag2VecSTLF, self).__init__()self.feature_extractor = feature_extractor# 冻结特征提取器的参数for param in self.feature_extractor.parameters():param.requires_grad = False# 双向 LSTM 层self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)# 自注意力机制self.attention = nn.MultiheadAttention(embed_dim=2 * hidden_dim, num_heads=1, batch_first=True)# 全连接层用于预测下一天 24 小时的负荷self.fc = nn.Linear(2 * hidden_dim, output_dim)def forward(self, x):x = self.feature_extractor(x)x = x.view(x.size()[0], seg_c, -1)# LSTM 前向传播lstm_out, _ = self.lstm(x)  # lstm_out 形状: (batch_size, seq_length, 2 * hidden_dim)# 注意力机制attn_output, _ = self.attention(lstm_out, lstm_out, lstm_out)  # 计算自注意力,形状: (batch_size, seq_length, 2 * hidden_dim)context_vector = torch.sum(attn_output, dim=1)  # 计算上下文向量,形状: (batch_size, 2 * hidden_dim)# 全连接层预测output = self.fc(context_vector)  # 预测输出,形状: (batch_size, output_dim)return output

三. 与整数编码(IE)的特征处理方法进行对比

使用论文中的GEFCom2014数据集中的温度和负荷数据,训练的参数设置按照论文中最优效果的参数设置。论文中使用的温度数据来自于数据集中的哪一个气象站,论文中没有说,此处是选择w1气象站的温度数据训练的结果和论文中的RMSE指标不太一样,但是从IE和MultiTag2Vec的RMSE指标对比可以看到,论文提出的特征提取方法具有一定优势。

部署方式

  • Python 3.9.12
  • Pytorch
  • 以及其他的常用python库

  • 需要本文的详细复现过程的项目源码、数据和预训练好的模型可从该地址处获取完整版:地址跳转

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/459297.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ceral】c++轻量的序列化库

背景 在开发硬件产品时,会有一些参数配置文件,为了保密性或者传输,需要对其序列化处理,待到产品读取文件时,进行反序列化解码转化为设定的参数类型。 简介 ceral是一个仅包含头文件的C序列化库,可以将任…

分组数据的交叉验证方法【Python代码汇总】

分组数据的交叉验证方法 如果生成过程产生了依赖样本的组,那么独立同分布(i.i.d.)假设就会失效。 . 这种数据分组是特定于领域的。例如,医疗数据通常从多位患者中收集,每位患者可能包含多个样本,而这些样本…

Stable Diffusion 3.5发布:图像生成新纪元,多模态AI的突破!

在人工智能的图像生成领域,我们刚刚迎来了一位新的明星——Stable Diffusion 3.5。这是一款由多模态扩散Transformer(MMDiT)驱动的文本到图像模型,它在图像质量、字体处理、复杂提示理解以及资源效率方面都实现了显著提升。今天&a…

云原生笔记

#1024程序员节|征文# 单页应用(Single-Page Application,SPA) 云原生基础 云原生全景内容宽泛,以至于刚开始就极具挑战性。 云原生应用是高度分布式系统,它们存在于云中,并且能够对变化保持韧性。系统是由多个服务组成的&#…

三维测量与建模笔记 - 2.1 坐标转换基础

2D坐标变换 平移可以看做是对原始的x和y加上了一个偏移,也可以理解为按照给定的平移向量进行移动。 缩放变换,本质是对x,y乘上一个缩放系数。 综合缩放、旋转、平移 矩阵乘法的顺序会对结果有影响,需要注意。 2D欧氏变换 2D欧式…

IDM下载器 (Internet Download Manager) v6.42.2 中文免激活绿色版

Internet Download Manager (IDM下载器) 是一款先进的下载工具,可以提升您的下载速度高达5倍,支持续传,IDM可以让用户自动下载某些类型的文件,它可将文件划分为多个下载点以更快速度下载,并列出最近的下载,方便访问文件。相对于其…

RAGChecker:显著超越RAGAS,一个精细化评估和诊断 RAG 系统的创新框架

RAG应用已经是当下利用大模型能力的典型应用代表,也获得了极大的推广,各种提升RAG性能的技术层出不穷。然而,如何全面、准确地评估 RAG 系统一直是一个挑战。传统评估方法存在诸多局限性:无法有效评估长文本回复、难以区分检索和生成模块的错误来源、与人…

大文件秒传,分片上传,断点续传

大文件分片上传 一 功能描述 1.文件通过web端分片多线程上传到服务端,然后web端发起分片合并,完成大文件分片上传功能 2.上传过的大文件,实现秒传 3.上传过程中,服务异常退出,实现断点续传 二 流程图 三 代码运行…

php怎么并发处理

PHP的并发处理是指在同一时间能够处理多个请求,提高系统的吞吐量和响应速度。下面介绍几种PHP的并发处理方法。 一、多线程 多线程是指在一个进程中启动多个线程同时执行任务。在PHP中,可以使用pthreads扩展来实现多线程编程。pthreads提供了Thread、W…

MySQL快速入门——库的操作

MySQL快速入门——库的操作 1. 创建数据库2. 创建数据库案例3. 字符集和校验规则3.1 查看字符集和校验规则3.2 验证不同校验编码的影响 4. 操作数据库4.1 查看数据库4.2 修改数据库4.3 数据库删除4.4 备份和恢复 5. 查看连接情况 1. 创建数据库 1. 语法: CREATE DA…

Rust编程与项目实战-元组

【图书介绍】《Rust编程与项目实战》-CSDN博客 《Rust编程与项目实战》(朱文伟,李建英)【摘要 书评 试读】- 京东图书 (jd.com) Rust编程与项目实战_夏天又到了的博客-CSDN博客 8.2.1 元组的定义 元组是Rust的内置复合数据类型。Rust支持元组,而且元…

Linux服务器运维宝典(一)

基础命令: ls:列出目录下的内容 ls [ -a -l -h] Linux路径当不使用选项和参数,直接使用 ls 命令本体,表示:以平铺形式,列出当前工作目录下的内容选项: -a:all 的意思,…

如何在Linux下安装和配置Docker

文章目录 安装前的准备在Debian/Ubuntu上安装Docker添加Docker仓库安装Docker验证安装 在CentOS/RHEL上安装Docker安装必要的软件包设置Docker仓库安装Docker启动Docker服务 Docker的基本使用拉取一个镜像运行一个容器 配置Docker创建Docker目录使用非root用户运行Docker 结语 …

山西农业大学20241029

08-VUE 一. 组件化开发项目1. 准备工作2. 开发思路3. 拆分页面图4. App.vue5. 项目优化 - 全局注册两个小组件 二. 组件三大组成部分细节1. 样式设置2. data必须是一个函数2.1 原因 一. 组件化开发项目 1. 准备工作 将准备好的App.vue中的内容复制到项目中将图片保存到assets下…

【Spring Boot】元注解

元注解 1.元注解1.1 Target1.2 Retention1.3 Inherited1.4 Documented1.5 interface 2.自定义注解2.1 创建自定义注解类2.2 实现业务逻辑2.3 使用自定义注解 1.元注解 元注解就是定义注解的注解,是 Java 提供的用于定义注解的基本注解。 注解 说明 Retention是注解…

如何使用 Vite 创建一个项目(Vue 或者 React)

如何使用 vite 创建一个 Vue 或者 React 项目? 打开终端,输入命令 npm create vitelatest外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传 修改你需要的项目名 选择你要创建的项目的框架(Vue 还是 React 这是个问题&am…

医学影像基础:常见的医学影像学术语和概念

目录 1. 基本影像术语 2. X射线相关术语 3. CT相关术语 4. MRI相关术语 5. 超声相关术语 6. 核医学相关术语 7. 影像质量和技术术语 8. 临床影像术语 总结 在医学影像学中,有许多术语和概念是常用且重要的。了解这些术语和概念有助于更好地理解影像报告、与…

Linux 读者写者模型

1.背景概念 在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少。相比较改写,它们读的机会反而高的多。这样就衍生出了读者写者模型,在这个模型中,有两类线程:读者和写者。读…

Linux补基础之:网络配置

目录 一、检查主机与虚拟机是否能正常通信 二、网络的连接模式 桥接模式 流程 特点 NAT模式 流程 特点 仅主机 流程 特点 三、修改静态IP 四、可能遇到的问题 防火墙 DNS 五、主机名更改 六、登录服务器 实际的大数据管理中,会有由很多服务器构成的…

使用AMD GPU和LangChain构建问答聊天机器人

Question-answering Chatbot with LangChain on an AMD GPU — ROCm Blogs 作者:Phillip Dang 2024年3月11日 LangChain是一个旨在利用语言模型强大功能来构建前沿应用程序的框架。通过将语言模型连接到各种上下文资源并基于给定的上下文提供推理能力,L…