分布式搜索引擎elasticsearch操作文档操作介绍

1.DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:
    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{"query": {"查询类型": {"查询条件": "条件值"}}
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
  // 查询所有GET /indexName/_search{"query": {"match_all": {}}}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{"query": {"match": {"FIELD": "TEXT"}}
}

mulit_match语法如下:

GET /indexName/_search
{"query": {"multi_match": {"query": "TEXT","fields": ["FIELD1", " FIELD12"]}}
}

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{"query": {"term": {"FIELD": {"value": "VALUE"}}}
}

当我搜索的是精确词条时,能正确查询出结果

20210721171655308.png&pos_id=img-4IkqTZJw-1730173977102)

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{"query": {"range": {"FIELD": {"gte": 10, // 这里的gte代表大于等于,gt则代表大于"lte": 20 // lte代表小于等于,lt则代表小于}}}
}

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

GET hotel/_search
{"query":{"geo_bounding_box":{"location":{"top_left": {"lat": 31.1,"lon": 121.5},"bottom_right":{"lat": 30.9,"lon": 121.7}}}}
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件

语法说明:

// geo_distance 查询
GET /indexName/_search
{"query": {"geo_distance": {"distance": "15km", // 半径"FIELD": "31.21,121.5" // 圆心}}
}

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

[{"_score" : 17.850193,"_source" : {"name" : "虹桥如家酒店真不错",}},{"_score" : 12.259849,"_source" : {"name" : "外滩如家酒店真不错",}},{"_score" : 11.91091,"_source" : {"name" : "迪士尼如家酒店真不错",}}
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在这里插入图片描述

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

在这里插入图片描述

参考:https://zhuanlan.zhihu.com/p/79202151

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

在这里插入图片描述

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法
  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

在这里插入图片描述

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

在这里插入图片描述

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果
2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “如家”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{"query": {"function_score": {"query": {  .... }, // 原始查询,可以是任意条件"functions": [ // 算分函数{"filter": { // 满足的条件,品牌必须是如家"term": {"brand": "如家"}},"weight": 2 // 算分权重为2}],"boost_mode": "sum" // 加权模式,求和}}
}
3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分
1)语法示例:
GET /hotel/_search
{"query": {"bool": {"must": [{"term": {"city": "上海" }}],"should": [{"term": {"brand": "皇冠假日" }},{"term": {"brand": "华美达" }}],"must_not": [{ "range": { "price": { "lte": 500 } }}],"filter": [{ "range": {"score": { "gte": 45 } }}]}}
}
2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/459794.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件系统安全保证措施,质量保证措施方案(Word原件套用)

系统安全保证措施是构建稳固防御体系的核心,旨在全方位保障信息系统的安全性。以下是对这七项措施的简要概述: 一、身份鉴别:采用多种认证方式,如密码、生物识别等,确保用户身份的准确无误,防止非法入侵。 …

玩转Docker | 使用Docker部署捕鱼网页小游戏

玩转Docker | 使用Docker部署捕鱼网页小游戏 一、项目介绍项目简介项目预览 二、系统要求环境要求环境检查Docker版本检查检查操作系统版本 三、部署捕鱼网页小游戏下载镜像创建容器检查容器状态下载项目内容查看服务监听端口安全设置 四、访问捕鱼网页小游戏五、总结 一、项目…

局域网 docker pull 使用代理拉取镜像

局域网 docker pull 使用代理拉取镜像 1、需求: 我有win主机,上面装有代理可连接dockerhub;我另有linux主机,直接pull因墙失败,想走win的代理访问dockerhub拉镜像;两台主机在同一个局域网中; …

c语言中结构体传参和实现位段

结构体传参 有两种方法: #include<stdio.h> struct S {int data[1000];int num; }; //结构体传参 void print1(struct S s) {printf("%d\n",s.num); } //结构体地址传参 void print2(struct S *ps) {printf("%d\n",ps->num); }int main() {pr…

2024年10月HarmonyOS应用开发者基础认证全新题库

注意事项&#xff1a;切记在考试之外的设备上打开题库进行搜索&#xff0c;防止切屏三次考试自动结束&#xff0c;题目是乱序&#xff0c;每次考试&#xff0c;选项的顺序都不同 这是基础认证题库&#xff0c;不是高级认证题库注意看清楚标题 高级认证题库地址&#xff1a;20…

HTML3D旋转相册

文章目录 序号目录1HTML满屏跳动的爱心(可写字)2HTML五彩缤纷的爱心3HTML满屏漂浮爱心4HTML情人节快乐

Depcheck——专门用于检测 JavaScript 和 Node.js 项目中未使用依赖项的工具

文章目录 Depcheck 是什麽核心功能&#x1f4da;检测未使用的依赖&#x1f41b;检测缺失的依赖✨支持多种文件类型&#x1f30d;可扩展性 安装与使用1. 安装 Depcheck2. 使用 Depcheck Depcheck 的应用总结项目源码&#xff1a; Depcheck 是什麽 来看一个常见错误场景&#x1…

Chrome和Firefox哪款浏览器的密码管理更安全

在当今数字化时代&#xff0c;浏览器已成为我们日常生活中不可或缺的工具。其中&#xff0c;谷歌Chrome和Mozilla Firefox是两款广受欢迎的浏览器。除了浏览网页外&#xff0c;它们还提供了密码管理功能&#xff0c;帮助用户保存和管理登录凭证。然而&#xff0c;关于哪款浏览器…

Camp4-L0:Linux 前置基础

书生浦语大模型实战营Camp4-L0:Linux前置基础 教程地址&#xff1a;https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/linux任务地址&#xff1a;https://github.com/InternLM/Tutorial/blob/camp4/docs/L0/linux/task.md 任务描述完成所需时间闯关任务完成SSH连接与…

C++之多态的深度剖析

目录 前言 1.多态的概念 2.多态的定义及实现 2.1多态的构成条件 2.1.1重要条件 2.1.2 虚函数 2.1.3 虚函数的重写/覆盖 2.1.4 选择题 2.1.5 虚函数其他知识 协变&#xff08;了解&#xff09; 析构函数的重写 override 和 final关键字 3. 重载&#xff0c;重写&…

如何从iconfont中获取字体图标并应用到微信小程序中去?

下面我们一一个微信小程序的登录界面的制作为例来说明&#xff0c;如何从iconfont中获取字体图标是如何应用到微信小程序中去的。首先我们看效果。 这里所有的图标&#xff0c;都是从iconfont中以字体的形式来加载的&#xff0c;也就是说&#xff0c;我们自始至终没有使用一张…

Linux shell编程学习笔记87:blkid命令——获取块设备信息

0 引言 在进行系统安全检测时&#xff0c;我们需要收集块设备的信息&#xff0c;这些可以通过blkid命令来获取。 1 blkid命令的安装 blkid命令是基于libblkid库的命令行工具&#xff0c;可以在大多数Linux发行版中使用。 如果你的Linux系统中没有安装blkid命令&#xff0c;…

RuoYi-Vue 使用开发 人员管理-查询功能

说明&#xff1a;这里仅仅开发列表显示 与 查询功能&#xff0c;剩下的添加、修改等可能会遇到报错&#xff0c;后面有机会&#xff0c;会单独写一篇文章教学处理 1.了解开发需求 作为示例的二级开发&#xff0c;这里的人员管理&#xff0c;管理的是 部门信息&#xff0c;员工…

Tomcat 11 下载/安装 与基本使用

为什么要使用Tomcat&#xff1f; 使用Apache Tomcat的原因有很多&#xff0c;以下是一些主要的优点和特点&#xff1a; 1. 开源与免费 Tomcat是一个完全开源的项目&#xff0c;任何人都可以免费使用。它由Apache软件基金会维护&#xff0c;拥有一个活跃的社区&#xff0c;这…

Django入门教程——用户管理实现

第六章 用户管理实现 教学目的 复习数据的增删改查的实现。了解数据MD5加密算法以及实现模型表单中&#xff0c;自定义控件的使用中间件的原理和使用 需求分析 系统问题 员工档案涉及到员工的秘密&#xff0c;不能让任何人都可以看到&#xff0c;主要是人事部门进行数据的…

[ 问题解决篇 ] 解决远程桌面安全登录框的问题

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

微信小程序时间弹窗——年月日时分

需求 1、默认当前时间2、选择时间弹窗限制最大值、最小值3、每次弹起更新最大值为当前时间&#xff0c;默认值为上次选中时间4、 minDate: new Date(2023, 10, 1).getTime(),也可以传入时间字符串new Date(2023-10-1 12:22).getTime() html <view class"flex bb ptb…

【Spring框架】Spring框架的开发方式

目录 Spring框架开发方式前言具体案例导入依赖创建数据库表结构创建实体类编写持久层接口和实现类编写业务层接口和实现类配置文件的编写 IoC注解开发注解开发入门&#xff08;半注解&#xff09;IoC常用注解Spring纯注解方式开发 Spring整合JUnit测试 Spring框架开发方式 前言…

江协科技STM32学习- P24 DMA数据转运DMA+AD多通道

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…

【刷题11】CTFHub技能树sql注入系列

整数型注入 看到源码了&#xff0c;直接sql一套秒了 字符型注入 SQL 报错注入 构造payload 1 and (select extractvalue(1,concat(’~’,(select database())))) 后续步骤跟sql基本步骤一样 SQL 布尔注入 人工测试太麻烦&#xff0c;这里直接使用sqlmap,知道这有sql注入漏洞&am…