计算结构力学:多自由度振动系统

本文以笔记的形式记录计算结构力学的若干基础知识。

注1:限于研究水平,分析难免不当,欢迎批评指正。

注2:文章内容会不定期更新

预修1:线性代数

1. 标准特征值

复矩阵Schur分解:对于复矩阵\boldsymbol{A}\in \mathbb{C}^{n\times n},存在酉矩阵\boldsymbol{Q}\in \mathbb{C}^{n\times n},使得\boldsymbol{Q}^{H}\boldsymbol{A}\boldsymbol{Q}=\boldsymbol{T}\in \mathbb{C}^{n\times n}为上三角矩阵。

实矩阵Schur分解: 对于实矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n},存在正交矩阵\boldsymbol{Q}\in \mathbb{R}^{n\times n},使得\boldsymbol{Q}^{T}\boldsymbol{A}\boldsymbol{Q}=\boldsymbol{T}\in \mathbb{C}^{n\times n}为上三角矩阵。

实对称矩阵Schur分解: 对于实对称矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n},存在正交矩阵\boldsymbol{Q}\in \mathbb{R}^{n\times n},使得\boldsymbol{Q}^{T}\boldsymbol{A}\boldsymbol{Q}=diag\left ( \lambda _{1},\cdots , \lambda _{n} \right )\in \mathbb{R}^{n\times n}

2. 广义特征值

对于矩阵\boldsymbol{A}\in \mathbb{C}^{n\times n},\boldsymbol{B}\in \mathbb{C}^{n\times n},若存在数\lambda,使得方程\boldsymbol{A}\boldsymbol{x}=\lambda \mathbf{B}\mathbf{x}存在非零解,则\lambda\boldsymbol{A}相对\boldsymbol{B}的特征向量,\boldsymbol{x}\boldsymbol{A}相对于\boldsymbol{B}的对应特征向量。

工程应用中,\boldsymbol{A}\boldsymbol{B}通常为Hermite矩阵实对称矩阵

复矩阵Schur分解:对于复矩阵\boldsymbol{A}\in \mathbb{C}^{n\times n},\boldsymbol{B}\in \mathbb{C}^{n\times n},存在酉矩阵\boldsymbol{Q}\boldsymbol{Z},使得\boldsymbol{Q}^{H}\boldsymbol{A}\boldsymbol{Z}=\boldsymbol{T}\boldsymbol{Q}^{H}\boldsymbol{B}\boldsymbol{Z}=\boldsymbol{S}为上三角矩阵,且\lambda \left ( A,B \right )=\left\{\begin{matrix} 0& t_{kk}=0,s_{kk}=0\\ \frac{t_{ii}}{s_{ii}} & else \end{matrix}\right.

实矩阵Schur分解:对于实矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n},\boldsymbol{B}\in \mathbb{R}^{n\times n},存在正交矩阵\boldsymbol{Q}\boldsymbol{Z},使得\boldsymbol{Q}^{H}\boldsymbol{A}\boldsymbol{Z}=\boldsymbol{T}\boldsymbol{Q}^{H}\boldsymbol{B}\boldsymbol{Z}=\boldsymbol{S}为上三角矩阵。

实对称矩阵Schur分解:对于实对称矩阵\boldsymbol{A}\in \mathbb{R}^{n\times n}实对称正定矩阵\boldsymbol{B}\in \mathbb{R}^{n\times n},存在正交矩阵\boldsymbol{X}=\left [\boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots ,\boldsymbol{x}_{n} \right ],使得\boldsymbol{X}^TA\boldsymbol{X}=diag\left ( a_{1},\cdots ,a_{n} \right )\in \mathbb{R}^{n\times n}, \boldsymbol{X}^T\boldsymbol{B}\boldsymbol{X}=diag\left ( b_{1},\cdots ,b_{n} \right )\in \mathbb{R}^{n\times n},并且\boldsymbol{A}\boldsymbol{x}_{i}=\lambda_{i} \boldsymbol{B} \boldsymbol{x}_{i},\lambda _{i}=\frac{a_{i}}{b_{i}}

3. 多项式特征值

\boldsymbol{A}_{0},\cdots ,\boldsymbol{A}_{d}\in\mathbb{C}^{n\times n}\lambda \in\mathbb{C},则\boldsymbol{A}_{0}+\lambda\boldsymbol{A}_{1}+\cdots + \lambda^{m}\boldsymbol{A}_{m}称为m次矩阵多项式,记作P\left ( \lambda \right )

对于矩阵多项式,若存在数\lambda_{i}\in \mathbb{C}^{n\times n},使得方程P\left ( \lambda \right )\mathbf{x}=0存在非零解\boldsymbol{x}_{i},则称\lambda_{i}称为多项式特征值,\boldsymbol{x}_{i}为对应的特征向量。

容易看出,

  • m=1,并取\boldsymbol{A}_{1}=-\boldsymbol{B},即\left (\boldsymbol{A}-\lambda \boldsymbol{B} \right )\boldsymbol{x}=\boldsymbol{0},多项式特征值实际上就是广义特征值;
  • m=1,并取\boldsymbol{A}_{1}=-\boldsymbol{E},即\left (\boldsymbol{A}-\lambda \boldsymbol{E} \right )\boldsymbol{x}=\boldsymbol{0},多项式特征值实际上就是标准特征值;

 预修2:积分变换

1. 辅助函数

定义单位阶跃函数H\left ( t \right )

H\left ( t \right )=\begin{cases} 1 & \text{ if } t>0 \\ 0 & \text{ if } t<0 \end{cases}

定义单位脉冲函数\delta \left ( t \right )

\delta _{\epsilon }\left ( t \right )=\begin{cases} \frac{1}{\epsilon } & \text{ if } 0\leq t \leq \epsilon \\ 0 & else \end{cases}, \delta\left ( t \right )=\lim_{\epsilon \rightarrow 0}\delta _{\epsilon }\left ( t \right )

定义指数衰减函数E\left ( t \right )

E\left ( t \right )=\begin{cases} e^{-\beta t} & \text{ if } t\geq 0 \\ 0& \text{ if } t<0 \end{cases}

2. 卷积分

对于函数f_{1}\left ( t \right )f_{2}\left ( t \right ),则\int_{-\infty }^{+\infty}f_{1}\left ( \tau \right )f_{2}\left ( t-\tau \right )dt称为函数函数f_{1}\left ( t \right )f_{2}\left ( t \right )的卷积,记作f_{1}\left ( t \right )*f_{2}\left ( t \right )

交换律:f_{1}\left ( t \right )*f_{2}\left ( t \right )=f_{2}\left ( t \right )*f_{1}\left ( t \right )

3. Fourier变换

Fourier积分定理:若函数f\left ( t \right )\left ( -\infty ,+\infty \right )上满足下列条件,(1). f\left ( t \right )在任一有限区间满足Dirichlet条件 ;(2). f\left ( t \right )在无限区间\left ( -\infty ,+\infty \right )上绝对可积分(即\int_{-\infty }^{+\infty }\left |f\left ( t \right ) \right |dt < \infty),则有

f\left ( t \right )=\int_{-\infty }^{+\infty }\int_{-\infty }^{+\infty }f\left ( \tau \right )e^{-j\omega\tau}d\tau e^{j\omega t}d\omega

F\left ( \omega \right )=\mathcal{F}\left ( f\left ( t \right ) \right ) =\int_{-\infty }^{+\infty }f\left ( t \right )e^{-j\omega t}dt为函数f\left ( t \right )的Fourier变换,对应的Fourier逆变换为f\left ( t\right )=\mathcal{F}^{-1}\left [ F\left ( \omega \right )\right ] =\frac{1}{2\pi }\int_{-\infty }^{+\infty }F\left ( \omega \right )e^{j\omega t}d\omega

微分性质:若\left | t \right |\rightarrow \infty时,\left | f\left (t \right )\right |\rightarrow \infty,则有\mathcal{F}\left ( {f}'\left ( t \right ) \right )=j\omega \mathcal{F}\left ( f\left ( t \right ) \right )

4. Laplace变换

若函数f\left ( t \right )\left [ 0,+\infty \right )时有定义,可利用单位阶跃函数将Fourier变换积分区间缩减到正半轴,利用指数衰减函数来削减绝可积的要求,从而有

\mathcal{F}\left ( H\left ( t \right )E\left ( t \right )f\left ( t \right ) \right )=\int_{+\infty}^{+\infty } H\left ( t \right )E\left ( t \right )f\left ( t \right )e^{-j\omega t}dt=\int_{0}^{+\infty }f\left ( t \right )e^{-\beta t-j\omega t}dt

若函数f\left ( t \right )\left [ 0,+\infty \right )时有定义,而且积分\int_{0}^{+\infty }f\left ( t \right )e^{-st}dt在复数s=\beta +j\omega的某一域内存在,则记,

F\left ( s \right )=\mathcal{L}\left ( f\left ( t \right ) \right )=\int_{0}^{+\infty }f\left ( t \right )e^{-st}dt为函数f\left ( t \right )的Laplace变换,

f\left ( t \right )=\mathcal{L}^{-1}\left ( F\left ( s \right ) \right )=\frac{1}{2\pi j}\int_{\beta -j\infty }^{\beta +j\infty}F\left ( s \right )e^{st}dsF\left ( s \right )的Laplace逆变换。

Laplace变换存在的充分条件:若函数f\left ( t \right )t\geq 0时满足以下条件,(1) 在t\geq 0任一有限区域分段连续;(2) 当t\rightarrow +\infty时,存在常数M>0c\geq 0,使得\left | f\left ( t \right ) \right |<Me^{ct}, 则f\left ( t \right )的Laplace变换\int_{0}^{+\infty }f\left ( t \right )e^{-st}dt在半平面Re\left ( s \right )>c上一定存在,右端积分在Re\left ( s \right )\geqslant c_{1}>c绝对收敛且一致收敛,并且在半平面Re\left ( s \right )>c内,F\left ( s \right )为解析解。

微分性质:若F\left ( s \right )=\mathcal{L}\left ( f\left ( t \right ) \right ),则有\mathcal{L}\left ( {f}'\left ( t \right ) \right )=sF\left ( s \right )-F\left ( 0 \right )

积分性质:若F\left ( s \right )=\mathcal{L}\left ( f\left ( t \right ) \right ),则有\mathcal{L}\left ( \int_{0}^{t}f\left ( t \right ) dt\right )=\frac{1}{s}F\left ( s \right )

一、频域分析

对于多自由度广义动力学方程,

\boldsymbol{M}\ddot{\boldsymbol{u}}+\boldsymbol{C}\dot{\boldsymbol{u}}+\boldsymbol{K}\boldsymbol{u}=\boldsymbol{f}

两边实施Fourier变换,则有

\mathcal{L}\left ( \boldsymbol{M}\ddot{\boldsymbol{u}}+\boldsymbol{C}\dot{\boldsymbol{u}}+\boldsymbol{K}\boldsymbol{u} \right )=\mathcal{L}\left (\boldsymbol{f} \right )

进一步,对于线性系统,则简化为

\boldsymbol{M}\mathcal{L}\left (\ddot{\boldsymbol{u}} \right )+\boldsymbol{C}\mathcal{L}\left (\dot{\boldsymbol{u}} \right )+\boldsymbol{K}\mathcal{L}\left (\boldsymbol{u} \right )=\mathcal{L}\left (\boldsymbol{f} \right )

进一步,利用Laplace变换的微分性质,则有

\left (s ^{2} \boldsymbol{M} + s\boldsymbol{C}+\boldsymbol{K} \right )\mathcal{L}\left (\boldsymbol{u} \right )=\mathcal{L}\left (\boldsymbol{f} \right )+\boldsymbol{M}\dot{\boldsymbol{u}}\left ( 0 \right )+\left ( s\boldsymbol{M}+\boldsymbol{C}\right )\boldsymbol{u}\left ( 0 \right )

对于零初始条件,则有

\left (s ^{2} \boldsymbol{M} + s\boldsymbol{C}+\boldsymbol{K} \right )\mathcal{L}\left (\boldsymbol{u} \right )=\mathcal{L}\left (\boldsymbol{f} \right )

1.1 复模态分析

若不考虑外加激励 ,则有

\left (s ^{2} \boldsymbol{M} + s\boldsymbol{C}+\boldsymbol{K} \right )\mathcal{L}\left (\boldsymbol{u} \right )=\boldsymbol{0}

可以看出,此问题实际上对应二次多项式特征值问题,需要考虑将其线性化,则有

\left\{\begin{matrix} s\boldsymbol{M}\mathcal{L}\left (\boldsymbol{\dot{u}} \right )+s\mathbf{C}\mathcal{L}\left (\boldsymbol{u} \right )+\boldsymbol{K}\mathcal{L}\left (\boldsymbol{u} \right )=\mathbf{0}\\ \boldsymbol{M}\mathcal{L}\left (\boldsymbol{\dot{u}} \right ) = s\boldsymbol{M}\mathcal{L}\left (\boldsymbol{u} \right )\end{matrix}\right.,

将上述写成矩阵形式,则有

\begin{pmatrix} \boldsymbol{K} & \boldsymbol{0}\\ \boldsymbol{0} & -\boldsymbol{M} \end{pmatrix}\begin{pmatrix} \mathcal{L}\left (\boldsymbol{u} \right )\\ \mathcal{L}\left (\boldsymbol{\dot{u}} \right )\end{pmatrix}=-s\begin{pmatrix} \boldsymbol{C} & \boldsymbol{M}\\ \boldsymbol{M} & \boldsymbol{0} \end{pmatrix}\begin{pmatrix} \mathcal{L}\left (\boldsymbol{u} \right )\\ \mathcal{L}\left (\boldsymbol{\dot{u}} \right )\end{pmatrix}

\begin{pmatrix} \boldsymbol{C} & \boldsymbol{K}\\ -\boldsymbol{M} & \boldsymbol{0} \end{pmatrix}\begin{pmatrix} \mathcal{L}\left (\boldsymbol{\dot{u}} \right )\\ \mathcal{L}\left (\boldsymbol{u} \right )\end{pmatrix}=-s\begin{pmatrix} \boldsymbol{M} & \boldsymbol{0}\\ \boldsymbol{0} & \boldsymbol{M} \end{pmatrix}\begin{pmatrix} \mathcal{L}\left (\boldsymbol{\dot{u}} \right )\\ \mathcal{L}\left (\boldsymbol{u} \right )\end{pmatrix}

1.2 实模态分析

若不考虑外加激励与阻尼 ,则有

\left (\boldsymbol{K}+s ^{2} \boldsymbol{M} \right )\mathcal{L}\left (\boldsymbol{u} \right )=0

可以看出,此问题实际上对应二次多项式特征值问题,考虑矩阵\boldsymbol{K}与矩阵\boldsymbol{M}的正定性可知,

s^{2}=-\frac{\left ( \mathcal{L}\left (\boldsymbol{u} \right ) \right )^{T}\boldsymbol{K}\left ( \mathcal{L}\left (\boldsymbol{u} \right ) \right )}{\left ( \mathcal{L}\left (\boldsymbol{u} \right ) \right )^{T}\boldsymbol{M}\left ( \mathcal{L}\left (\boldsymbol{u} \right ) \right )}<0

因此,s是实部为零的纯虚数,可令\omega ^{2} = -s^{2},即有

\left (\boldsymbol{K}-\omega ^{2} \boldsymbol{M} \right )\mathcal{L}\left (\boldsymbol{u} \right )=0

二、时域分析

参考文献

  • Golub G H , Loan C F V .Matrix Computations.Johns Hopkins University Press,1996.
  • 徐树方. 数值线性代数(第二版).  北京大学出版社, 2010.
  • F. Tisseur and K. Meerbergen. The Quadratic Eigenvalue Problem. SIAM Review, 43 (2001), 235-286.
  • 张元林. 积分变换.
  • 胡少伟. 结构振动理论及其应用.  
  • 王勖成. 有限单元法

网络资料

数值线性代数:Arnoldi求解特征值/特征向量icon-default.png?t=O83Ahttps://blog.csdn.net/qq_26221775/article/details/131690666?spm=1001.2014.3001.5502

数值线性代数: Krylov子空间法icon-default.png?t=O83Ahttps://blog.csdn.net/qq_26221775/article/details/131947169?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/460043.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

将多个commit合并成一个commit并提交

0 Preface/foreword 1 压缩多个commit方法 1.1 git merge --squash 主分支&#xff1a;main 开发分支&#xff1a;test 当前在test分支提交了8个commits&#xff0c;功能已经开发完成&#xff0c;需要将test分支合并到main分支&#xff0c;但是不想在合并时候&#xff0c;看…

JVM 实战篇(一万字)

此笔记来至于 黑马程序员 内存调优 内存溢出和内存泄漏 内存泄漏&#xff08;memory leak&#xff09;&#xff1a;在Java中如果不再使用一个对象&#xff0c;但是该对象依然在 GC ROOT 的引用链上&#xff0c;这个对象就不会被垃圾回收器回收&#xff0c;这种情况就称之为内…

使用Fiddler Classic抓包工具批量下载音频资料

1. 通过F12开发者工具&#xff0c;下载音频文件 浏览器打开音频列表->F12快捷键->网络->媒体&#xff0c;播放一个音频文件&#xff0c;右边媒体下生成一个音频文件&#xff0c;右击“在新标签页中打开”&#xff0c;可以下载这个音频文件。 2.通过Fiddler Classic抓…

新能源行业必会基础知识---电力现货问答---第9问---什么是输电权?什么是输电权市场?

新能源行业必会基础知识-----电力现货问答-----主目录-----持续更新https://blog.csdn.net/grd_java/article/details/142909208 虽然这本书已经出来有几年了&#xff0c;现货市场已经产生了一定变化&#xff0c;但是原理还是相通的。还是推荐大家买来这本书进行阅读观看&#…

音视频入门基础:AAC专题(11)——AudioSpecificConfig简介

音视频入门基础&#xff1a;AAC专题系列文章&#xff1a; 音视频入门基础&#xff1a;AAC专题&#xff08;1&#xff09;——AAC官方文档下载 音视频入门基础&#xff1a;AAC专题&#xff08;2&#xff09;——使用FFmpeg命令生成AAC裸流文件 音视频入门基础&#xff1a;AAC…

java-web-day5

1.spring-boot-web入门 目标: 开始最基本的web应用的构建 使用浏览器访问后端, 后端给浏览器返回HelloController 流程: 1.创建springboot工程, 填写模块信息, 并勾选web开发的相关依赖 注意: 在新版idea中模块创建时java下拉框只能选17, 21, 23 这里选17, maven版本是3.6.3, 很…

基于SSM的智能台球厅系统

基于SSM的智能台球厅系统设计与实现 摘要 智能台球厅系统是一个以用户便捷体验为核心的管理系统&#xff0c;结合SSM&#xff08;Spring、Spring MVC、MyBatis&#xff09;框架来实现台球厅日常业务流程的自动化和智能化管理。系统主要包含用户预约、场地管理、设备状态监控、支…

String的长度有限,而我对你的思念却无限延伸

公主请阅 1. 为什么学习string类&#xff1f;2. string类的常用接口2.1 string类对象的常见构造2.1.1 string 2.2 operator[]2.3 迭代器2.4 auto自动推导数据类型2.5 范围for2.6 迭代器第二层2.7 size和length获取字符串的长度2.8 max_size 获取这个字符串能设置的最大长度2.9 …

spring-第十一章 注解开发

spring 文章目录 spring前言1.注解回顾1.1原理1.2springIOC注解扫描原理1.2.1解释1.2.2案例 2.声明bean的注解补充&#xff1a;Bean注解&#xff0c;管理三方包对象 3.spring注解的使用3.1加入aop依赖3.2配置文件中添加context命名空间3.3配置文件中指定要扫描的包3.4在Bean上使…

Linux 之 文件属性与目录、字符串处理、系统信息获取

学习任务&#xff1a; 1、 文件属性与目录&#xff1a;Linux 文件类型、stat、chmod、链接文件、目录文件 2、 字符串处理&#xff1a;字符串输入/输出、strlen、strcat、strcpy、memset、atoi()、atol()、atoll() 3、 系统信息&#xff1a;proc 虚拟文件系统&#xff08;重点&…

搜索引擎算法更新对网站优化的影响与应对策略

内容概要 随着互联网的不断发展&#xff0c;搜索引擎算法也在不断地进行更新和优化。了解这些算法更新的背景与意义&#xff0c;对于网站管理者和优化人员而言&#xff0c;具有重要的指导意义。不仅因为算法更新可能影响到网站的排名&#xff0c;还因为这些变化也可能为网站带…

省域经济高质量发展水平测算及数据2000-2021年

经济高质量发展水平测算&#xff0c;是通过一系列科学的方法和指标&#xff0c;对经济活动的各个方面进行评估和量化的过程。这不仅涉及到经济增长的速度&#xff0c;更涵盖了效益、效率、可持续性等多个维度。包含了2000年至2021年期间&#xff0c;全国31个省份、自治区、直辖…

MacOS/Macbook用户自定义字体安装教程

Mac本自定义字体 示例机型一、下载相关字体文件到本地二、打开启动台三、选择其他四、选择字体册五、添加字体六、选择字体七、安装字体八、安装完成 MacOS官网安装教程 示例机型 系统&#xff1a;MacOS12.6&#xff0c;芯片&#xff1a;M1Pro 一、下载相关字体文件到本地 二…

【undefined reference to xxx】zookeeper库编译和安装 / sylar项目ubuntu20系统编译

最近学习sylar项目&#xff0c;编译项目时遇到链接库不匹配的问题&#xff0c;记录下自己解决问题过程&#xff0c;虽然过程很艰难&#xff0c;但还是解决了&#xff0c;以下内容供大家参考&#xff01; undefined reference to 问题分析 项目编译报错 /usr/bin/ld: ../lib/lib…

sql进阶篇

1.更新记录 AC&#xff1a; update examination_info set tag replace(tag, "PYTHON", "Python") where tag "PYTHON";2.删除记录 AC&#xff1a; DELETE FROM exam_record WHERE timestampdiff(minute, start_time, submit_time) < 5AND…

【每日刷题】Day145

【每日刷题】Day145 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 375. 猜数字大小 II - 力扣&#xff08;LeetCode&#xff09; 2. LCR 112. 矩阵中的最长递增路径 …

【tomcat系列漏洞利用】

Tomcat 服务器是一个开源的轻量级Web应用服务器&#xff0c;在中小型系统和并发量小的场合下被普遍使用。主要组件&#xff1a;服务器Server&#xff0c;服务Service&#xff0c;连接器Connector、容器Container。连接器Connector和容器Container是Tomcat的核心。一个Container…

WPF的行为(Behavior)

WPF&#xff08;Windows Presentation Foundation&#xff09;是微软.NET框架中用于构建Windows客户端应用程序的UI框架。它提供了一种声明性的方式来定义用户界面&#xff0c;并且支持MVVM&#xff08;Model-View-ViewModel&#xff09;设计模式。 在WPF中&#xff0c;“行为…

【LeetCode】两数之和、大数相加

主页&#xff1a;HABUO&#x1f341;主页&#xff1a;HABUO 1.两数之和 题目&#xff1a;给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一…

React核心思维模型(一)

一、数据和视图分离&#xff0c;数据改变驱动视图更新 <div>Tom</div>如果我们想修改上述div盒子中的Tom为Jerry&#xff0c;应该怎样修改呢 在jquery中我们直接把界面元素抓过来修改 document.getElementsByTagName(div).item(0) Jerry 但在react中&#xf…