HashSet 如何检查重复?
当你把对象加入HashSet
时,HashSet
会先计算对象的hashcode
值来判断对象加入的位置,同时也会与其他加入的对象的 hashcode
值作比较,如果没有相符的 hashcode
,HashSet
会假设对象没有重复出现。但是如果发现有相同 hashcode
值的对象,这时会调用equals()
方法来检查 hashcode
相等的对象是否真的相同。如果两者相同,HashSet
就不会让加入操作成功。
在 JDK1.8 中,HashSet
的add()
方法只是简单的调用了HashMap
的put()
方法,并且判断了一下返回值以确保是否有重复元素。直接看一下HashSet
中的源码:
// Returns: true if this set did not already contain the specified element
// 返回值:当 set 中没有包含 add 的元素时返回真
public boolean add(E e) {return map.put(e, PRESENT)==null;
}
而在HashMap
的putVal()
方法中也能看到如下说明:
// Returns : previous value, or null if none
// 返回值:如果插入位置没有元素返回null,否则返回上一个元素
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
...
}
也就是说,在 JDK1.8 中,实际上无论HashSet
中是否已经存在了某元素,HashSet
都会直接插入,只是会在add()
方法的返回值处告诉我们插入前是否存在相同元素。
HashMap 的底层实现
JDK1.8 之前
JDK1.8 之前 HashMap
底层是 数组和链表 结合在一起使用也就是 链表散列。HashMap 通过 key 的 hashcode
经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash
判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。
HashMap
中的扰动函数(hash
方法)是用来优化哈希值的分布。通过对原始的 hashCode()
进行额外处理,扰动函数可以减小由于糟糕的 hashCode()
实现导致的碰撞,从而提高数据的分布均匀性。
JDK 1.8 HashMap 的 hash 方法源码:
JDK 1.8 的 hash 方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。
static final int hash(Object key) {int h;// key.hashCode():返回散列值也就是hashcode// ^:按位异或// >>>:无符号右移,忽略符号位,空位都以0补齐return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}
对比一下 JDK1.7 的 HashMap 的 hash 方法源码.
static int hash(int h) {// This function ensures that hashCodes that differ only by// constant multiples at each bit position have a bounded// number of collisions (approximately 8 at default load factor).h ^= (h >>> 20) ^ (h >>> 12);return h ^ (h >>> 7) ^ (h >>> 4);
}
相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。
所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。
JDK1.8 之后
相比于之前的版本, JDK1.8 之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。
TreeMap、TreeSet 以及 JDK1.8 之后的 HashMap 底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。
我们来结合源码分析一下 HashMap
链表到红黑树的转换。
1、 putVal
方法中执行链表转红黑树的判断逻辑。
链表的长度大于 8 的时候,就执行 treeifyBin
(转换红黑树)的逻辑。
// 遍历链表
for (int binCount = 0; ; ++binCount) {// 遍历到链表最后一个节点if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);// 如果链表元素个数大于TREEIFY_THRESHOLD(8)if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st// 红黑树转换(并不会直接转换成红黑树)treeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;
}
2、treeifyBin
方法中判断是否真的转换为红黑树。
final void treeifyBin(Node<K,V>[] tab, int hash) {int n, index; Node<K,V> e;// 判断当前数组的长度是否小于 64if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)// 如果当前数组的长度小于 64,那么会选择先进行数组扩容resize();else if ((e = tab[index = (n - 1) & hash]) != null) {// 否则才将列表转换为红黑树TreeNode<K,V> hd = null, tl = null;do {TreeNode<K,V> p = replacementTreeNode(e, null);if (tl == null)hd = p;else {p.prev = tl;tl.next = p;}tl = p;} while ((e = e.next) != null);if ((tab[index] = hd) != null)hd.treeify(tab);}
}
将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树。