Python并发编程库:Asyncio的异步编程实战

Python并发编程库:Asyncio的异步编程实战

在现代应用中,并发和高效的I/O处理是影响系统性能的关键因素之一。Python的asyncio库是专为异步编程设计的模块,提供了一种更加高效、易读的并发编程方式,适用于处理大量的I/O密集型任务(如网络请求、文件操作等)。在这篇博客中,我们将详细介绍如何使用asyncio来进行异步编程,并通过一个实战案例,展示asyncio如何提升程序的性能。
在这里插入图片描述

1. 异步编程基础概念

在开始编码前,我们先理解一些基本概念:

  • 同步:任务按顺序依次执行,只有当前任务执行完成后,下一个任务才会开始执行。
  • 异步:任务可以并发执行,当遇到I/O操作时,程序可以切换到其他任务执行,从而不必等待。
  • 协程(Coroutine):协程是可以被挂起和恢复的函数,用于实现异步执行。在Python中,用async def定义协程函数。
  • 事件循环(Event Loop)asyncio的核心,它负责调度并运行协程,当协程遇到await时就会释放控制权,切换到其他任务。
    在这里插入图片描述

2. Asyncio的核心功能

asyncio库主要由以下几个核心部分组成:

  • 事件循环:管理所有异步任务的调度与执行。
  • 协程函数:用async def定义的函数,可以包含await关键字,表示程序可以在此处暂停并切换任务。
  • 任务(Tasks):将协程封装成任务,让它们在事件循环中并发运行。
  • Future对象:表示一个异步操作的最终结果。

2.1 异步协程函数

asyncio中,用async def定义的函数即为协程函数。协程函数只有在被await调用时才会执行。

import asyncioasync def my_coroutine():print("Start coroutine")await asyncio.sleep(1)print("End coroutine")# 运行协程
asyncio.run(my_coroutine())

2.2 任务的创建

可以使用asyncio.create_task将协程封装成任务,从而允许多个任务并发执行:

async def task1():print("Task 1 start")await asyncio.sleep(2)print("Task 1 end")async def task2():print("Task 2 start")await asyncio.sleep(1)print("Task 2 end")async def main():task_1 = asyncio.create_task(task1())task_2 = asyncio.create_task(task2())await task_1await task_2asyncio.run(main())

在上面的代码中,两个任务将并发执行。由于task2的延迟时间较短,因此它会先结束。

2.3 等待多个任务

asyncio.gather可以等待多个协程并发执行并返回结果:

async def fetch_data(n):print(f"Fetching data {n}")await asyncio.sleep(2)return f"Data {n}"async def main():results = await asyncio.gather(fetch_data(1), fetch_data(2), fetch_data(3))print(results)asyncio.run(main())

在这里,asyncio.gather会并发运行三个fetch_data任务,并返回所有任务的结果。
在这里插入图片描述

3. Asyncio异步编程实战

下面我们通过一个网络爬虫的例子展示asyncio的应用。假设我们需要从多个URL中提取数据,如果我们按顺序一个一个地请求这些URL,效率会非常低。我们可以使用asyncio并发请求这些URL,从而显著提升程序性能。

3.1 使用Asyncio实现简单网络爬虫

我们将使用aiohttp库实现异步的HTTP请求。aiohttp是一个支持异步的HTTP客户端,非常适合和asyncio结合使用。

首先,安装aiohttp库:

pip install aiohttp

然后,我们编写异步爬虫代码:

import asyncio
import aiohttp# 异步获取单个URL数据
async def fetch_url(session, url):async with session.get(url) as response:return await response.text()# 主函数:使用asyncio.gather并发请求多个URL
async def main(urls):async with aiohttp.ClientSession() as session:tasks = [fetch_url(session, url) for url in urls]results = await asyncio.gather(*tasks)return results# 示例URL列表
urls = ["http://example.com","http://example.org","http://example.net"
]# 运行主函数并获取结果
data = asyncio.run(main(urls))
for i, content in enumerate(data):print(f"Content of URL {i+1}:")print(content[:100])  # 打印前100个字符

在这个代码中,我们并发地请求了多个URL,并获取每个URL的内容。这样做的好处是,程序可以在等待一个URL响应时去处理其他URL请求,极大地提高了效率。

3.2 超时控制与错误处理

在网络请求中,超时和错误处理也是重要的一部分。我们可以为fetch_url添加超时和异常处理,以确保程序在遇到问题时不会崩溃。

async def fetch_url(session, url):try:async with session.get(url, timeout=5) as response:response.raise_for_status()  # 检查响应状态return await response.text()except asyncio.TimeoutError:print(f"Timeout error for URL: {url}")except aiohttp.ClientError as e:print(f"Error fetching URL {url}: {e}")return None  # 返回None表示请求失败

在添加了错误处理后,即使某些URL请求失败,程序也会继续执行。
在这里插入图片描述

4. 性能对比:同步 vs 异步

为了更直观地感受asyncio带来的性能提升,我们可以通过对比同步和异步爬虫的执行时间。

4.1 同步版本爬虫

import requests
import timedef fetch_url_sync(url):response = requests.get(url)return response.text# 同步爬虫主函数
def main_sync(urls):results = []for url in urls:results.append(fetch_url_sync(url))return results# 测试同步爬虫
start_time = time.time()
data_sync = main_sync(urls)
end_time = time.time()print(f"同步爬虫耗时: {end_time - start_time} 秒")

4.2 异步版本爬虫

直接运行我们上面的异步爬虫,并计算其执行时间:

start_time = time.time()
data_async = asyncio.run(main(urls))
end_time = time.time()print(f"异步爬虫耗时: {end_time - start_time} 秒")

在多个URL请求的场景下,异步爬虫的执行时间通常会比同步爬虫短得多,这展示了asyncio在I/O密集型任务中的显著优势。
在这里插入图片描述

5. 基础总结

上面介绍了asyncio的基本概念及其在Python异步编程中的应用,通过代码实例展示了如何使用asyncio进行异步操作以及如何显著提高程序的并发能力。异步编程虽然学习曲线较高,但在I/O密集型任务中具有明显优势,尤其是在网络请求、文件处理等场景中。
在这里插入图片描述

6. 进阶应用:使用信号量和限制并发数量

在实际应用中,异步任务的数量可能非常多(例如几百或几千个URL请求)。如果全部并发执行,可能会导致系统资源耗尽,甚至触发对方服务器的访问限制。asyncio提供了Semaphore(信号量)机制,可以限制同时执行的任务数量。

下面是如何使用信号量来限制并发任务数的示例:

async def fetch_url_with_semaphore(semaphore, session, url):async with semaphore:  # 使用信号量来限制并发数量try:async with session.get(url, timeout=5) as response:return await response.text()except Exception as e:print(f"Error fetching {url}: {e}")return Noneasync def main_with_semaphore(urls, max_concurrent_tasks=5):semaphore = asyncio.Semaphore(max_concurrent_tasks)  # 限制并发数量async with aiohttp.ClientSession() as session:tasks = [fetch_url_with_semaphore(semaphore, session, url) for url in urls]results = await asyncio.gather(*tasks)return results# 设置最大并发任务数为5
start_time = time.time()
data_with_limit = asyncio.run(main_with_semaphore(urls, max_concurrent_tasks=5))
end_time = time.time()
print(f"使用信号量限制的异步爬虫耗时: {end_time - start_time} 秒")

在这个例子中,我们通过信号量控制了最多只有5个任务同时运行,从而有效管理了系统资源的使用。
在这里插入图片描述

7. 异步上下文管理器

在异步编程中,我们经常需要创建和关闭连接、打开和关闭文件等,这些操作通常需要使用上下文管理器。Python 3.5引入了异步上下文管理器,允许我们用async with来管理异步资源。以aiohttp的Session为例,在异步编程中,这样的上下文管理器能够自动处理连接的关闭,非常方便。

使用异步上下文管理器读取文件

如果需要异步地处理文件操作,可以使用aiofiles库,该库支持异步读取和写入文件。以下是一个读取文件的简单示例:

首先安装aiofiles库:

pip install aiofiles

然后在代码中使用它:

import aiofilesasync def read_file_async(file_path):async with aiofiles.open(file_path, mode='r') as file:content = await file.read()return content# 示例
async def main():content = await read_file_async("example.txt")print(content)asyncio.run(main())

使用异步文件操作在处理大文件或需要高并发的文件操作时非常有用,因为它不会阻塞事件循环。
在这里插入图片描述

8. 小结

asyncio提供了强大的异步编程能力,使得Python在处理I/O密集型任务时的效率得到了显著提升。通过本文介绍的实战示例,你已经掌握了asyncio的核心概念和一些常用技术,包括:

  • 如何定义和运行协程函数
  • 如何并发地执行多个任务
  • 使用asyncio.gather批量并发执行任务
  • 利用信号量来控制并发任务数量
  • 应用异步上下文管理器管理资源

asyncio不仅适用于网络请求和文件操作,也可以应用于多种场景,例如爬虫、聊天应用、数据采集等。掌握asyncio之后,你会发现Python的异步编程能够使程序更加高效、流畅,从而提升系统的整体性能。希望你能在实际项目中将这些技术加以应用,打造更高效的异步系统。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/464172.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Vue项目1】第一篇

Vue项目1学习第一篇 01. 环境配置介绍和项目搭建02. Router路由配置引入03. ElementPlus引入和按需加载04. layout布局和菜单aside组件创建05. aside样式问题和treeMenu组件拆分06. treeMenu组件递归实现 01. 环境配置介绍和项目搭建 (1)安装node.js …

WPF使用Prism框架首页界面

1. 首先确保已经下载了NuGet包MaterialDesignThemes 2.我们通过包的项目URL可以跳转到Github上查看源码 3.找到首页所在的代码位置 4.将代码复制下来&#xff0c;删除掉自己不需要的东西&#xff0c;最终如下 <materialDesign:DialogHostDialogTheme"Inherit"Ide…

Golang | Leetcode Golang题解之第524题通过删除字母匹配到字典里最长单词

题目&#xff1a; 题解&#xff1a; func findLongestWord(s string, dictionary []string) (ans string) {m : len(s)f : make([][26]int, m1)for i : range f[m] {f[m][i] m}for i : m - 1; i > 0; i-- {f[i] f[i1]f[i][s[i]-a] i}outer:for _, t : range dictionary …

无人机的就业前景怎么样?

无人机的就业前景在当前及未来一段时间内都非常广阔。随着低空经济的蓬勃发展&#xff0c;无人机在农业、公安、测绘、交通、应急救援、影视拍摄等多个领域得到了广泛应用&#xff0c;对无人机操控员和相关专业人才的需求也随之急剧增加。 一、无人机操控员的就业前景 1. 高需…

如何将钉钉新收款单数据高效集成到MySQL

钉钉数据集成到MySQL的技术案例分享 在企业信息化管理中&#xff0c;数据的高效流动和处理至关重要。本文将分享一个具体的系统对接集成案例&#xff1a;如何将钉钉平台上的新收款单&#xff08;收款退款单&#xff09;数据集成到MySQL数据库中&#xff0c;方案名称为“dd-新收…

批量修改图片大小+删除空白页+手写签名

插入图片右键设置大小 设置对象格式 高度&#xff0c;宽度同一 最后一张图片拖到最后 alt键一下吸附好 ctrla全选图片 对齐 纵向分布 删除空白页 前面有文字 CTRL删除键 上一页是表格 CTRLd 勾选隐藏文字 手写签名 手机拍摄签名 发到电脑 文档里插入图…

软设师知识点-计算机网络

计算机网络 在一台安装好TCP/IP协议的计算机上&#xff0c;当网络连接不可用时&#xff0c;为了测试编写好的网络程序&#xff0c;通常使用的目的主机IP地址127.0.0.1&#xff08;本地回送地址&#xff09; *网络设备 物理层的互传设备&#xff1a;中继器(用于扩展局域网网段…

40.第二阶段x86游戏实战2-初识lua

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 本人写的内容纯属胡编乱造&#xff0c;全都是合成造假&#xff0c;仅仅只是为了娱乐&#xff0c;请不要…

Docker可视化管理面板DPanel的安装

本文软件由网友 rui 推荐&#xff1b; 什么是 DPanel &#xff1f; DPanel 是一款 Docker 可视化管理面板&#xff0c;旨在简化 Docker 容器、镜像和文件的管理。它提供了一系列功能&#xff0c;使用户能够更轻松地管理和部署 Docker 环境。 软件特点&#xff1a; 可视化管理&…

Nature文章《deep learning》文章翻译

这篇文章是对Nature上《deep learning》文章的翻译。原作者 Yann LeCun, Yoshua Bengio& Geoffrey Hinton。 这篇文章的中心思想是深入探讨深度学习在机器学习中的革命性贡献&#xff0c;重点介绍其在特征学习、监督学习、无监督学习等方面的突破&#xff0c;并阐述其在图…

低代码用户中心:简化开发,提升效率的新时代

随着数字化转型的加速&#xff0c;企业对于快速交付高质量应用的需求日益增长。在这个背景下&#xff0c;低代码开发平台应运而生&#xff0c;成为越来越多企业和开发者的首选工具。今天&#xff0c;我们将聚焦于低代码用户中心&#xff0c;探讨其如何帮助开发者简化流程、提升…

leetcode71:简化路径

给你一个字符串 path &#xff0c;表示指向某一文件或目录的 Unix 风格 绝对路径 &#xff08;以 / 开头&#xff09;&#xff0c;请你将其转化为 更加简洁的规范路径。 在 Unix 风格的文件系统中规则如下&#xff1a; 一个点 . 表示当前目录本身。此外&#xff0c;两个点 ..…

2、liunx网络基础

一、TCP/IP协议概述 Linux服务器默认网卡配置文件在/etc/sysconfig/network-scripts/下&#xff0c;命名的名称一般为:ifcfg-eth0 ifcfg-eth1 &#xff0c;eth0表示第一块网卡&#xff0c;eth1表示第二块网卡&#xff0c;依次类推。一般DELL R720标配有4块千兆网卡。 TCP/IP&a…

[neo4j报错]py2neo.errors.ClientError: [Request.Invalid] Not Found解决方案

报错源代码 g Graph(http://localhost:7687, auth("neo4j", "password"))或许这是从网上复制下来的代码&#xff0c;看上去没什么问题&#xff0c;但实际上 要结合具体的浏览器上的地址来看&#xff0c;具体如下&#xff1a; 看到了吗&#xff0c;这里才…

WPF+MVVM案例实战(二十一)- 制作一个侧边弹窗栏(AB类)

文章目录 1、案例效果1、侧边栏分类2、AB类侧边弹窗实现1.文件创建2、样式代码与功能代码实现3、功能代码实现 3 运行效果4、源代码获取 1、案例效果 1、侧边栏分类 A类 &#xff1a;左侧弹出侧边栏B类 &#xff1a;右侧弹出侧边栏C类 &#xff1a;顶部弹出侧边栏D类 &#xf…

基于Multisim数控直流稳压电源电路(含仿真和报告)

【全套资料.zip】数控直流稳压电源电路设计Multisim仿真设计数字电子技术 文章目录 功能一、Multisim仿真源文件二、原理文档报告资料下载【Multisim仿真报告讲解视频.zip】 功能 1.输出直流电压调节范围5-12V。 2.输出电流0-500mA。 3.输出直流电压能步进调节&#xff0c;步…

原来大佬的测试用例都是这样写的...

1、测试点与测试用例 测试点不等于测试用例&#xff0c;这是我们首先需要认识到的。 问题1&#xff1a;这些测试点在内容上有重复&#xff0c;存在冗余。 问题2&#xff1a;一些测试点的测试输入不明确&#xff0c;不知道测试时要测试哪些。 问题3&#xff1a;总是在搭相似…

ubuntu20.04 加固方案-设置SSH是否使用业界认可的加密算法

一、编辑/etc/ssh/sshd_config配置文件 打开终端。 使用文本编辑器&#xff08;如vim&#xff09;编辑/etc/ssh/sshd_config文件。 vi /etc/ssh/sshd_config 二、添加配置参数 在打开的配置文件中&#xff0c;如图位置添加如下参数&#xff1a; 查看支持的算法&#xff1a;h…

机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…