突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳

在工程应用中,如燃气轮机、核反应堆和航空推进系统,对具备优异高温机械性能的金属合金需求十分旺盛。由于材料熔点的固有限制,传统镍基 (Ni) 高温合金的耐温能力已接近极限。为满足开发高温结构材料的需求,耐火高熵合金 (RHEAs) 于 2010 年被提出,它因在 1000°C 及以上温度中保持高强度的能力而备受关注。

通过添加不同的高熔点耐火元素,一些 RHEAs 已表现出与高温合金相当的高温强度。此外,由高熵效应带来的结构稳定性,使得 RHEAs 在高温下极具应用潜力。然而,虽然在 RHEAs 中添加耐火元素会提高其高温强度,但其室温延展性会大幅降低。比如,大多数 RHEAs 在室温下的压缩断裂应变小于 10%,难以进一步加工。

为了开发同时具备较好高温强度、室温延展性目标性能的 RHEAs,人们进行了多项研究。过去,大家通过调整某些元素的组成来设计 RHEAs,但这种设计大多依赖研究人员的经验和直觉,存在极大的不确定性。此外,RHEAs 可能的组成空间很大,包含数十亿种候选成分,这种复杂成分和其庞大的搜索空间严重限制了我们对有前途合金的快速发现。

近年来,使用机器学习 (ML) 解决材料科学中的复杂问题受到了广泛关注,北京科技大学宿彦京团队设计了一个结合 ML、遗传搜索、聚类分析和实验反馈的多目标优化 (MOO) 框架,并针对 RHEAs 成分空间,寻找具备最佳高温强度和室温延展性的合金

具体而言,研究团队合成了 24 种 RHEAs,并确定 ZrNbMoHfTa 合金具有高温应用潜力,其中,Zr0.13Nb0.27Mo0.26Hf0.13Ta0.21 合金表现出优异的机械强度,其在 1200°C 下的屈服强度接近 940 MPa,室温断裂应变为 17.2%。该合金的显著耐热性和良好的结构稳定性表明其在高温下具有结构应用的潜力,而室温延展性则提升了该合金的加工性能。

相关成果以「Machine-Learning-Assisted Compositional Design of Refractory High-Entropy Alloys with Optimal Strength and Ductility」为题,发表于 Engineering。

研究亮点:

  • 本研究提出了一种方法,通过整合 ML、遗传搜索、聚类分析和实验反馈,加速发现具备高温强度和室温延展性的 RHEAs 成分

  • Zr0.13Nb0.27Mo0.26Hf0.13Ta0.21 合金在 1200°C 下的高屈服强度超出了所有已报道的 RHEAs,同时 1200°C 也突破了镍基高温合金的服役温度极限

  • 这项工作为 RHEAs 的多重性能优化奠定了基础,也可以进一步应用于其他合金或材料系统的成分设计

在这里插入图片描述

论文地址:
https://www.sciencedirect.com/science/article/pii/S2095809924005113

开源项目「awesome-ai4s」汇集了百余篇 AI4S 论文解读,并提供海量数据集与工具:

https://github.com/hyperai/awesome-ai4s

数据集:利用统计方法构建更多数据集

为了构建机器学习模型,研究人员从文献中收集了含有 4 族 (Ti, V, Cr)、5 族 (Zr, Nb, Mo)、6 族 (Hf, Ta, W) 难熔金属元素和铝 (Al) 的合金样本数据。所有合金均通过电弧熔炼制备,以减少因材料加工导致的性能差异。初始数据集的数据条目包括报告的成分 (ci) 和机械性能 (y),未考虑添加间隙元素 (如氧、氮、碳)的 RHEAs,所收集的铸态合金包含单相或多相结构。相应地,组建了 54 和 145 个合金样本的两个独立数据集,分别用于高温强度、室温延展性这两个目标性能的预测。

鉴于 RHEAs 系统的搜索空间非常大,单靠基于小数据训练的 ML 模型进行预测来寻找具有最佳性能的材料是不够的。可以定义一个效用函数,从而选择一些合金进行实验,以最大化预期效用。在本研究中,研究人员采用了目标性能期望改进 (EI) 作为效用指标,以平衡探索(旨在改进预测模型)和利用(旨在找到最佳预测结果)。具体而言,使用了著名的统计方法「自助法」进行有放回的抽样,构建更多的数据集,而这些数据集被用于训练不同的 ML 模型。

模型架构:整合 ML、遗传搜索、聚类分析和实验设计的 MOO 策略

下图 (a) 展示了本研究用于 RHEAs 优化设计的 MOO 策略,其整体工作流程分为 3 个部分:

  • 第一,机器学习 (Machine learning) :如下图左侧,选择 ML 模型计算给定合金目标属性的期望改进 (EI) 值

  • 第二,遗传搜索 (Genetic search):如下图中间,使用非支配排序遗传算法 (NSGA) II 基于目标性能期望改进值搜索候选合金成分

  • 第三,实验反馈 (Experiment feedback):如下图右侧,通过聚类分析选择合金和实验验证的实验反馈

在这里插入图片描述

基于机器学习的 RHEAs 多目标优化框架

机器学习:svr. r 模型评估高温屈服强度、室温断裂应变

如上图所示,研究人员训练了 ML 模型,通过建立成分与性能之间的关系来预测合金的目标性能。收集的合金中所涉及的 10 种元素的摩尔成分被直接用作输入特征,两个目标性能(高温屈服强度和室温断裂应变)是 ML 模型的输出。

研究考虑了 9 种常用于回归的模型,用均方根误差 (RMSE)、平均绝对误差 (MAE) 和皮尔逊相关系数 r² 评估模型性能。根据研究结果,选择 svr. r 模型作为后续遗传搜索中评估高温屈服强度、室温断裂应变的最终模型。

遗传搜索:搜索候选合金成分

遗传搜索此前已被用于高熵合金 (HEAs) 和镍基高温合金的成分设计。在这里,基于 ML 预测计算的 EI 值作为 NSGA-II 算法的输入,进行启发式搜索,经过选择、交叉和变异后,在每次遗传迭代结束时生成帕累托前沿 (Pareto front, PF) 和支配解的前沿。

更具体地说,在种群初始化后,研究人员利用自举采样基于训练数据构建附加数据集。通过自举样本训练模型后,可以获得性能的平均值及其相关不确定性,以计算每种合金的 EI 值。经过几代的选择、交叉和变异后,得到一条 EI 结果的 PF (Pareto font of EI)。最终,经过 100 代和 100 个随机选择的初始种群的结果汇总,获得收敛的最佳 PF。

实验反馈:包括通过聚类分析进行合金选择和实验验证

为指导未知化合物的合成,研究人员在 PF 上进行聚类分析,使用 k-means 方法从聚类中心选择合金候选者,如下图 © 所示。这一步通过将测量结果纳入训练数据集,实现了 ML 模型的迭代改进。

在这里插入图片描述

使用基于聚类的选择器(Clustering-based selector)来获得PF上的潜在合金(Alloys)

研究结果:确定 ZrNbMoHfTa 合金系统具有高温应用潜力

通过前文提及的方法,研究人员合成并表征了 24 种预测的合金成分,如下图所示,研究发现,其中 4 种合金的高温屈服强度和室温断裂应变分别达到了 714-1061 MPa 和 17.2%-50.0% 的优异组合。研究人员对训练数据集 (即 T 数据,P1-P7) 中的合金性能与 MOO 优化后的结果 (E24、E19、E17 和 E21) 对比如下:

在这里插入图片描述

新PF中的RHEAs及其属性(E24、E19、E17和E21)与T数据PF中的合金(P1–P7)的比较

首先来看 MOO 优化后 RHEAs 性能实现提升:为了说明 MOO 策略的结果,研究人员比较了原始帕累托前沿 (PF) 和新 PF 中合金的两个目标性能,如上表所示,经过优化后,两个目标性能都有显著提升。

具体而言,考虑延展性高的合金 (>50%),E24 合金的高温屈服强度 (HT) 几乎是 P1 的 2.5 倍(即典型的 TaNbHfZrTi 合金,其高温屈服强度仅为 295 MPa);同理,考虑到在 1000 °C 时具有高屈服强度 (>1000 MPa) 的合金,E21 的断裂应变几乎是 P6 的 3 倍;合金 P2、P3、P4 和 P5 也被多个优化后的材料主导。与 P2 相比,E24 的屈服强度增加了 41.7%,同时其断裂应变也增加了 54.3% 以上。E19 和 E17 合金在高温强度和室温延展性方面也表现出改进。

总结来说,与典型的 NbMoTaW 合金 (高温屈服强度为 548 MPa,断裂应变为 2.6%)和 NbMoTaWV 合金 (高温屈服强度为 842 MPa,断裂应变为 1.7%)相比,大多数新设计的 RHEAs 在高温屈服强度和室温延展性方面都有显著提升。

接着来看优化合金的结构和抗软化性能:研究人员进一步研究了优化 RHEAs 在 1000°C 压缩变形前后的相位,以探索其在高温潜在工程应用中的结构稳定性。根据下图 (a) 和 (b) 所示的 XRD 结果,铸态合金 E24、E19 和 E17 的相由无序的体心立方 (BCC) 固溶体组成,而合金 E21 除表现出 BCC 结构外,伴有少量的 Laves 相。XRD 图谱表明,优化后的 RHEAS 在高温变形前后的相结构基本一致,显示出优化 RHEAs 良好的结构稳定性。

在这里插入图片描述

新 PF 中设计合金的结构稳定性和软化阻力
(a, b) 相结构;(a) 热处理变形前和 (b) 热处理变形后

研究人员还将合金 E21 在高温变形下的屈服应力与文献中的数据进行了比较,显示出显著的抗软化能力提升。多重性能的改进表明,这些 RHEAs 有潜力替代传统的高温合金。

简而言之,研究人员确定了一个具有潜力的合金系统 ZrNbMoHfTa,特别是成分 Zr0.13Nb0.27Mo0.26Hf0.13Ta0.21,在 1200°C 下表现出接近 940 MPa 的屈服强度,并具有 17.2% 断裂应变的良好室温延展性。该成分在 1200°C 下的高屈服强度超过了已报道的 RHEAs,并且 1200°C 已经超出了镍基高温合金的使用温度极限。该合金的耐热性和良好的结构稳定性表明其在极端温度下的结构应用中具有相当大的潜力。

人工智能在材料学焕发巨大的应用价值

材料学,可以说是近代工业飞速发展的支柱学科之一。通过尽可能少的实验寻找到具有目标性能的新材料是加速材料发现的关键,然而,由于材料的组成、结构、工艺复杂,导致候选材料空间巨大,使新材料的高效设计难以实现。过去,科学家们通过调整已知晶体或试验新的元素组合来寻找新的晶体结构,这是一个昂贵且耗时的试错过程,通常需要几个月的时间才能得到有限的结果。如今,AI 让这一情况发生了彻底改变。

2023 年 11 月底,Google 旗下的 DeepMind 在 Nature 杂志发表了重磅论文,宣称他们开发了用于材料科学的人工智能强化学习模型 Graph Networks for Materials Exploration (GNoME),并通过该模型和高通量第一性原理计算,寻找到了 38 万余个热力学稳定的晶体材料,相当于「为人类增加了 800 年的智力积累」,极大加快了发现新材料的速度。同年 12 月,微软发布了材料科学领域的人工智能生成模型 MatterGen,可根据所需要的材料性质按需预测新材料结构。

GNoME 更多详情查看:领先人类 800 年?DeepMind 发布 GNoME,利用深度学习预测 220 万种新晶体

2024 年 6 月,来自英国和日本的科学家 Akiyasu Yamamoto 等人,利用机器学习技术,设计了一种将 researcher-driven 与 data-driven 方法相结合的研究体系,成功制造出世界上已知最强的铁基超导磁体。最新研究有望促进新一代磁共振成像 (MRI) 技术和未来电气化运输技术的发展。相关论文以「Superstrength permanent magnets with iron-based superconductors by data- and researcher-driven process design」为题,已发表于 Nature 子刊 NPG Asia Materials 上。

在这里插入图片描述

总而言之,结合机器学习和深度学习等方法,科学家们可以更好地预测材料的性能、模拟分子的结构和性质、优化材料的设计和合成、探索材料的微观结构和宏观性质之间的关系等。这些应用不仅有助于提高材料科学的研究水平,还可以为材料设计和制造等领域带来更多的创新机会。

参考资料:
1.https://www.sciencedirect.com/science/article/pii/S2095809924005113
2.https://phys.org/news/2024-09-machine-discovery-high-temperature-alloys.html
3.https://m.huxiu.com/article/2748177.html
4.https://www.sohu.com/a/808673682_120136032

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/465575.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode21:合并两个有序列表

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4]示例 2: 输入:l1 [], l2 [] 输出:[]示…

开源模型应用落地-glm模型小试-glm-4-9b-chat-vLLM集成(四)

一、前言 GLM-4是智谱AI团队于2024年1月16日发布的基座大模型,旨在自动理解和规划用户的复杂指令,并能调用网页浏览器。其功能包括数据分析、图表创建、PPT生成等,支持128K的上下文窗口,使其在长文本处理和精度召回方面表现优异&a…

K8S篇(基本介绍)

目录 一、什么是Kubernetes? 二、Kubernetes管理员认证(CKA) 1. 简介 2. 考试难易程度 3. 考试时长 4. 多少分及格 5. 考试费用 三、Kubernetes整体架构 Master Nodes 四、Kubernetes架构及和核心组件 五、Kubernetes各个组件及功…

关于路由笔记

路由 定义: 在计算机网络中,路由是将数据包从源节点传输到目标节点的过程。这个过程涉及到网络中的多个设备,如路由器、交换机等,其中路由器起着关键的决策作用。 工作原理示例: 假设你在一个公司的局域网内&#…

人工智能之人脸识别(人脸采集人脸识别)

文章目录 前言PySimpleGUI 库1-布局和窗口 前言 例如:随着人工智能的不断发展,本文主要介绍关于人工智能中GUI和PyMysql相应用。 本文采用代码+逻辑思路分析的方式有助于理解代码。 PySimpleGUI 库 PySimpleGUI 是一个用于简化 GUI 编程的…

如何找到养生生活视频素材?推荐几个优秀网站

今天,我们来聊一个实用的话题,那就是如何找到优质的养生视频素材。作为自媒体创作者,高质量的视频素材对内容制作至关重要。不论你是刚入行的新手,还是已经积累了一定粉丝的大V,找到合适的养生视频素材都能帮助你更好地…

旋转对称性,旋转矩阵的特征矢量也是T3矩阵的特征矢量

旋转对称性要求T3矩阵,在旋转后,特征矢量没发生改变,特征值大小也没变,即T3矩阵没有改变

美畅物联丨物联网通信新纪元:Cat.1与5G RedCap的差异化应用

​ 在物联网(IoT)迅猛发展的时代,通信标准对物联网设备的连接性、性能和适用性有着极为关键的作用。小编在《美畅物联丨Cat.1与NB-IoT:物联网设备的通信标准对比》中提到Cat.1与NB-IoT的对比区别,后来就有小伙伴问&…

OpenCV视觉分析之目标跟踪(12)找到局部的最大值函数meanShift()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在反向投影图像上找到一个对象。 meanShift 是一种用于图像处理和计算机视觉领域的算法,特别适用于目标跟踪、图像分割等任务。该算…

应急救援无人车:用科技守护安全!

一、核心功能 快速进入危险区域: 救援无人车能够迅速进入地震、火灾、洪水等自然灾害或重大事故的现场,这些区域往往对人类救援人员构成极大威胁。 通过自主导航和环境感知技术,无人车能够避开危险区域,确保自身安全的同时&…

安装acondana3, Conda command not found

Linux 服务器安装acondana3后 输入conda找不到 写入路径也没找到 vim ~/.bashrc 加入 PATH"root/anaconda3/bin:$PATH" 更新文件: source ~/.bashrc 还是找不到conda 命令 解决办法 source ~/anaconda3/etc/profile.d/conda.sh conda activate Your_e…

第07章 运算符的使用

一、算数运算符 算术运算符主要用于数学运算,其可以连接运算符前后的两个数值或表达式,对数值或表达式进行加 ()、减(-)、乘(*)、除(/)和取模(%&a…

6堆(超级重点)

堆(Heap)的核心概述 堆针对一个 JVM 进程来说是唯一的,也就是一个进程只有一个 JVM,但是进程包含多个线程,他们是共享同一堆空间的。 6.1.1. 堆内存细分 Java 7 及之前堆内存逻辑上分为三部分:新生区养老…

Google Guava 发布订阅模式/生产消费者模式 使用详情

目录 Guava 介绍 应用场景举例 1. 引入 Maven 依赖 2. 自定义 Event 事件类 3. 定义 EventListener 事件订阅者 4. 定义 EventBus 事件总线 5. 定义 Controller 进行测试 Guava 介绍 Guava 是一组来自 Google 的核心 Java 库,里面包括新的集合 类型&#xff08…

全面解析:网络协议及其应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 # 全面解析:网络协议及其应用 文章目录 网络协议概述定义发展历程主要优势 主要网络协议应用层协议传输层协议网络层…

如何使用SSH密钥和公钥加密技术保护您的cPanel服务器

在服务器管理过程中,cPanel和WHM是我们常用的管理工具。然而,有时我们仍然需要直接登录到服务器的Shell环境,以便执行脚本或修改配置文件。使用SSH是最安全的远程登录方式。SSH是一种安全协议,它能够加密你向服务器发送的命令以及…

【前端】JSX 中的 Fragments 详解

在 React 和 JSX 中,Fragments 是一个非常有用的概念,用于在不引入额外 DOM 节点的情况下返回多个元素。Fragments 可以帮助你保持 DOM 结构的整洁,避免不必要的嵌套层级。本文将详细介绍 Fragments 的概念、用法以及其在实际开发中的应用场景…

mac单独打开QT帮助文档助手

mac单独打开QT帮助文档助手 1.概述 windows和mac查看QT帮助文档的路径不同,下面给出两个系统的查找路径。 Windows 下: C:\Qt\Qt5.9.9\5.9.9\mingw49_32\bin\assistant.exeMac 下: /Users/apple/Qt5.9.9/5.9.9/clang_64/bin/Assistant2.使…

SSLHandshakeException错误解决方案

1、错误提示 调用Http工具报如下异常信息: cn.hutool.core.io.IORuntimeException: SSLHandshakeException: Received fatal alert: handshake_failure2、查询问题 一开始我以为是代码bug,网络bug甚至是配置环境未生效,找了一大圈&#xf…

海量数据迁移:Elasticsearch到OpenSearch的无缝迁移策略与实践

文章目录 一.迁移背景二.迁移分析三.方案制定3.1 使用工具迁移3.2 脚本迁移 四.方案建议 一.迁移背景 目前有两个es集群,版本为5.2.2和7.16.0,总数据量为700T。迁移过程需要不停服务迁移&#…