快速傅里叶变换(FFT)基础(附python实现)

对于非专业人士,傅里叶变换一直是一个神秘的武器,它可以分析出不同频域的信息,从时域转换到频域,揭示了信号的频率成分,对于数字信号处理(DSP)、图像、语音等数据来说,傅里叶变换是最为基础,同时非常重要的分析工具。在处理真实世界的问题中,快速傅里叶变换(Fast Fourier Transform,FFT)是一种高效的算法,用于计算离散傅里叶变换(Discrete Fourier Transform,DFT)及其逆变换。DFT是傅里叶变换在离散数据上的版本,FFT算法的出现极大地减少了DFT的计算复杂度,使得在实际应用中变得可行。本文介绍一些基础概念,最后使用一个python小例子来展示FFT的效果。

傅里叶变换的基本概念

傅里叶变换是一种数学工具,它表明任何周期函数都可以表示为正弦和余弦函数的和。在信号处理中,傅里叶变换用于分析信号的频率成分,即信号中包含的所有不同频率的正弦波。

离散傅里叶变换(DFT)

DFT是傅里叶变换的离散版本,它将有限长度的时域信号转换为有限长度的频域信号。对于一个长度为N的序列x[n],其DFT定义为:

[ X [ k ] = ∑ n = 0 N − 1 x [ n ] ⋅ e − j 2 π N k n ] [ X[k] = \sum_{n=0}{N-1} x[n] \cdot e{-j \frac{2\pi}{N} kn} ] [X[k]=n=0N1x[n]ejN2πkn]
其中,X[k]是序列x[n]的DFT,k是频率索引,j是虚数单位。

快速傅里叶变换(FFT)

FFT是DFT的一种高效算法实现,它利用了DFT的对称性和周期性等数学性质,将复杂度从 O ( N 2 ) O(N^2) O(N2)降低到 O ( N l o g N ) O(N log N) O(NlogN)。这意味着对于长度为N的序列,FFT算法可以在对数时间内完成DFT的计算。

FFT的关键性质

FFT是一种强大的工具,它使得在各种科学和工程领域中分析和处理信号成为可能。通过将信号分解为不同频率的组成部分,FFT揭示了信号的内在结构,为信号处理提供了一个强大的分析框架。所有这些,其实都利益于它具备如下的特点:

  1. 线性:FFT保持了傅里叶变换的线性性质。
  2. 时域和频域的局部性:FFT算法利用了“蝶形操作”来减少复数乘法的数量。
  3. 并行性:FFT可以并行执行,进一步提高计算效率。

因此,FFT在很有领域有广泛的应用:

  1. 信号处理:音频和图像的压缩、滤波和分析。
  2. 图像处理:边缘检测、图像增强和图像压缩。
  3. 通信系统:在无线通信中,FFT用于信道均衡和信号调制。
  4. 数据分析:频谱分析和周期性检测。
代码

下面给出一个例子,使用pytorch,分析两个不同频率合成后的信号,使用FFT识别出两个频率,最后使用matplotlib来进行可视化:

import torch
import numpy as np
import matplotlib.pyplot as plt# 设置参数
sample_rate = 1000  # 采样率 (Hz)
T = 1 / sample_rate  # 采样间隔
t = np.linspace(0, 1, sample_rate, endpoint=False)  # 时间向量# 生成信号
freq1, freq2 = 50, 120  # 两正弦波的频率
amplitude1, amplitude2 = 0.7, 0.5  # 振幅
signal = amplitude1 * np.sin(2 * np.pi * freq1 * t) + amplitude2 * np.sin(2 * np.pi * freq2 * t)# 将信号转换为 Torch 张量
signal_tensor = torch.tensor(signal, dtype=torch.float32)# 执行 RFFT
rfft_result = torch.fft.rfft(signal_tensor)# 获取幅度谱
magnitude = torch.abs(rfft_result)# 频率轴
frequencies = torch.fft.rfftfreq(signal.size, d=T)plt.figure(figsize=(12, 6))# 原始信号
plt.subplot(2, 1, 1)
plt.plot(t, signal)
plt.title('Original Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')# 频谱
plt.subplot(2, 1, 2)
plt.plot(frequencies.numpy(), magnitude.numpy())
plt.title('Magnitude Spectrum')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Magnitude')plt.tight_layout()
plt.show()
效果

上图为原始信息,由两个信息合成;下图为解析出来的光谱图,可以看到,分析得到两个脉冲,分别对应两个正弦波的频率:50与120,可以看到FFT的神奇之处了吧:)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/467064.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

丹摩征文活动|新手入门指南

在AI大模型发展的今天,高性能计算平台已经成为研究和应用领域中不可或缺的工具。丹摩智算平台专注于为用户提供强大的算力支持和便捷的操作流程,帮助研究者和开发者更高效地训练和优化AI模型。本教程将深入介绍丹摩智算平台的核心功能及具体操作步骤&…

Java项目实战II基于Spring Boot的便利店信息管理系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在快节奏的…

【VScode】VScode内的ChatGPT插件——CodeMoss全解析与实用教程

在当今快速发展的编程世界中,开发者们面临着越来越多的挑战。如何提高编程效率,如何快速获取解决方案,成为了每位开发者心中的疑问。今天,我们将深入探讨一款颠覆传统编程体验的插件——CodeMoss,它将ChatGPT的强大功能…

数据冒险-dadd,sub和and

从图中的流水线执行情况来看,我们可以分析指令之间的依赖关系。图中每条指令对应的执行阶段标注为 IF (取指令),ID (指令译码),EX (执行),Mem (访存),和 WB (写回)。以下是对每条指令依赖情况的分析: 第一条…

如何修改WordPress经典编辑器的默认高度?

boke112百科有一个使用WordPress搭建的小网站,文章内容就是几个字不到一行,但是每次使用经典编辑器编辑文章时,都觉得编辑器默认高度太高了,影响了我添加文章摘要和其他属性,有没有办法修改WordPress经典编辑器的默认高…

量化研究--年化57%全球动量模型策略回测,学习使用

文章声明:本内容为个人的业余研究,和任何单位,机构没有关系,文章出现的股票代码,全部只是测试例子,不做投资参考,投资有风险,代码学习使用,不做商业用途 本文利用全球动量模型策略回…

【JavaEE初阶 — 多线程】Thread类的方法&线程生命周期

目录 1. start() (1) start() 的性质 (2) start() 和 Thread类 的关系 2. 终止一个线程 (1)通过共享的标记结束线程 1. 通过共享的标记结束线程 2. 关于 lamda 表达式的“变量捕获” (2) 调用interrupt()方法 1. isInterrupted() 2. currentThread() …

Linux驱动开发(3):字符设备驱动

上一章节我们了解到什么是内核模块,模块的加载卸载详细过程以及内核模块的使用等内容。 本章,我们将学习驱动相关的概念,理解字符设备驱动程序的基本框架,并从源码上分析字符设备驱动实现和管理。 主要内容有如下五点:…

布谷直播源码部署服务器关于数据库配置的详细说明

布谷直播源码搭建部署配置接口数据库 /public/db.php(2019年8月后的系统在该路径下配置数据库,老版本继续走下面的操作) 在项目代码中执行命令安装依赖库(⚠️注意:如果已经有了vendor内的依赖文件的就不用执行了&am…

【Linux】从零开始使用多路转接IO --- 理解EPOLL的 LT水平触发模式 与 ET边缘触发模式

当你偶尔发现语言变得无力时, 不妨安静下来, 让沉默替你发声。 --- 里则林 --- 从零开始认识多路转接 1 EPOLL优缺点2 EPOLL工作模式 1 EPOLL优缺点 poll 的优点(和 select 的缺点对应) 接口使用方便:虽然拆分成了三个函数,…

云轴科技ZStack助力新远科技开启化工行业智能制造新篇章

新远科技基于云轴科技ZStack Cube超融合和ZStack Zaku容器云平台打造了灵活高效的IT基础设施,实现了IaaS和PaaS层的全面覆盖,优化了资源利用率,降低了硬件成本和运维复杂性,同时强化了数据安全和业务连续性。 化工行业的数字化先…

认识类和对象

认识类 类是用来对一个实体 ( 对象 ) 来进行描述的,主要描述该实体(对象)具有哪些属性(外观尺寸等),哪些功能(用来干啥) 类中包含的内容称为 类的成员。属性主要是用来描述类的,称之为 类的成员属性或者 类成员变量。方法主要说明类具有哪些功…

npm镜像的常用操作

查看当前配置的 npm 镜像 npm config get registry切换官方镜像 npm config set registry https://registry.npmjs.org/切换淘宝镜像(推荐) npm config set registry https://registry.npmmirror.com/切换腾讯云镜像 npm config set registry http://mirrors.cloud.tencent…

网购选择困难症怎么破?别忘了你的这位“帮手”

每年双十一对不少人来说,既是购物剁手狂欢节,也是货比三家纠结得不行的选择困难症复发期。而现在,Pura 70 能够帮助我们解决不够了解商品、选择困难症等问题啦。 小艺圈选,圈出你感兴趣的商品,快速货比三家 利用指关…

175页PPTBCG某企业健康智能制造与供应链战略规划建议书

智能制造与供应链战略规划方法论是一个系统性、科学性的框架,旨在指导企业实现智能制造转型和供应链优化。以下是对这一方法论的核心内容的归纳和阐述: 一、智能制造的目标与原则 明确智能制造目标: 提高生产效率:通过引入自动…

【VS+QT】联合开发踩坑记录

最新更新日期:2024/11/05 0. 写在前面 因为目前在做自动化产线集成软件开发相关的工作,需要用到QT,所以选择了VS联合开发,方便调试。学习QT的过程中也踩了很多坑,在此记录一下,提供给各位参考。 1. 环境配…

flutter 专题四 Flutter渲染流程

一、 Widget - Element - RenderObject关系 二、 Widget 、Element 、RenderObject 分别表示什么 2.1 Widget Widget描述和配置子树的样子 Widget就是一个个描述文件,这些描述文件在我们进行状态改变时会不断的build。但是对于渲染对象来说,只会使用最…

芯片需要按一下keyup或者复位按键虚拟或者下载之后芯片能下载却运行不了或者需要额外供电。

这些问题很有可能是因为外围电路器件幅值与设计不同的存在,导致你需要外部供电才能实现一个正常运行,可以检查一下外围电路在供电区域的电流区,电阻幅值是否和原理图设计时看的一模一样或者直接更换 因为按键会失灵,首先检查复位按…

React基础大全

文章目录 一、React基本介绍1.虚拟DOM优化1.1 原生JS渲染页面1.2 React渲染页面 2.需要提前掌握的JS知识 二、入门1.React基本使用2.创建DOM的两种方式2.1 使用js创建(一般不用)2.2 使用jsx创建 3.React JSX3.1 JSX常见语法规则3.2 for循环渲染数据 4.模…

leetcode 2043.简易银行系统

1.题目要求: 示例: 输入: ["Bank", "withdraw", "transfer", "deposit", "transfer", "withdraw"] [[[10, 100, 20, 50, 30]], [3, 10], [5, 1, 20], [5, 20], [3, 4, 15], [10, 50]] 输出&#xff…