为什么数学常数在 powershell 中以不同的方式截断?

问题

powershell中做一些命令行数学运算,遇到了以下好奇的事情。

# "{0:f64}" -f ([Math]::PI); "{0:f48}" -f ([Math]::PI)
3.1415926535897931159979634685441851615905761718750000000000000000
3.141592653589793115997963468544185161590576171875# "{0:f64}" -f ([Math]::E); "{0:f51}" -f ([Math]::E)
2.7182818284590450907955982984276488423347473144531250000000000000
2.718281828459045090795598298427648842334747314453125

为什么eπ被截断为不同的十进制长度(5148)?
为什么它不更接近某些偶数个字或字节(如16,32,64)?

问题解决

尽管 Pi 一直超越3.141592653589793,但那些只是幻想数字,因为 Pi 的真实值的下一位数字是2384…,但 PowerShell[Math]给你1159…。

[Math].Pi前 16 位小数是精确的,就像 一样[Math].e。

[Math].pi (64):
3.141592653589793 1159979634685441851615905761718750000000000000000
Actual Pi:
3.141592653589793 2384626433832795028841971693993751058209749445923...[Math].e (64):
2.718281828459045 0907955982984276488423347473144531250000000000000
Actual e:
2.718281828459045 2353602874713526624977572470936999595749669676277...

如果将前 16 位数字的字符串转换为以下内容,则会获得这两个值double:

(sandbox) PS C:\Users\grismar> "{0:f64}" -f [double]"3.141592653589793"
3.1415926535897931159979634685441851615905761718750000000000000000
(sandbox) PS C:\Users\grismar> "{0:f64}" -f [double]"2.718281828459045"
2.7182818284590450907955982984276488423347473144531250000000000000

因此,它们实际上对于相同数量的初始数字是准确的,并且第 16 位数字之后的两个值都不可信。

之所以在转换为浮点数时会产生不同长度的数字字符串,是因为浮点数必须像任何数字一样使用位来定义,但与整数不同,我们无法准确定义每个实数。您可以double在其他地方查找浮点数(如 a)的详细编码方式,这将解释长度差异。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/469278.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

物联网技术及其在智慧城市中的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 物联网技术及其在智慧城市中的应用 物联网技术及其在智慧城市中的应用 物联网技术及其在智慧城市中的应用 引言 物联网概述 定义…

新的服务器Centos7.6 安卓基础的环境配置(新服务器可直接粘贴使用配置)

常见的基础服务器配置之Centos命令 正常来说都是安装一个docker基本上很多问题都可以解决了,我基本上都是通过docker去管理一些容器如:mysql、redis、mongoDB等之类的镜像,还有一些中间件如kafka。下面就安装一个 docker 和 nginx 的相关配置…

金属箔电阻

6.金属箔电阻如何实现“高精度” 电阻的阻值会受到各种“应力”影响而发生改变,离开稳定性的高精度是没有意义的。 例如,电阻出厂时的精度时0.01%,为了实现精度付出了高昂的费用,但在几个月的存储或几百个小时的负载后阻值的变化…

在Django中安装、配置、使用CKEditor5,并将CKEditor5录入的文章展现出来,实现一个简单博客网站的功能

在Django中可以使用CKEditor4和CKEditor5两个版本,分别对应软件包django-ckeditor和django-ckeditor-5。原来使用的是CKEditor4,python manager.py makemigrations时总是提示CKEditor4有安全风险,建议升级到CKEditor5。故卸载了CKEditor4&…

C语言 | Leetcode C语言题解之第559题N叉树的最大深度

题目: 题解: /*** Definition for a Node.* struct Node {* int val;* int numChildren;* struct Node** children;* };*/int maxDepth(struct Node* root) {if (!root) {return 0;}int depth 0;// 创建空队列const int qCap 10e4 1;str…

SQLI LABS | Less-40 GET-BLIND Based-String-Stacked

关注这个靶场的其它相关笔记:SQLI LABS —— 靶场笔记合集-CSDN博客 0x01:过关流程 输入下面的链接进入靶场(如果你的地址和我不一样,按照你本地的环境来): http://localhost/sqli-labs/Less-40/ 都 Less-…

turtlesim修改窗口大小;添加自己的小乌龟;

目前手边有humble版本ROS。以此为教程。其他版本以此类推 github中搜索ros,然后选择ros官网(九点方阵那个图标)。然后 在branch中,选择humble,然后复制链接。 git clone https://github.com/ros/ros_tutorials.git -…

OSG开发笔记(三十一):OSG中LOD层次细节模型介绍和使用

​若该文为原创文章,未经允许不得转载 本文章博客地址:https://blog.csdn.net/qq21497936/article/details/143697554 各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究 长沙红胖子Qt…

VMWare虚拟机NAT模式下与外部主机(非宿主机)通信

VMWare虚拟机NAT模式下与外部主机(非宿主机)通信 1. VMWare虚拟机网络 VMWare的三种网络工作模式: Bridged:桥接模式NAT:网络地址转换模式Host-Only :仅主机模式 VMWare 网络连接配置界面如下: 在本次测试环境中&a…

IDEA连接不同种类数据库

首先添加驱动 到了添加页面后,引入驱动jar包 添加URL样版(我这来添加的是瀚高数据库,Key-Value)也可以看上图中URL Templates Key:default Value:jdbc:highgo://{host::localhost}?[:{port::5866}][/{data…

测试实项中的偶必现难测bug--<pre>标签问题

问题描述: 用户从网上copy的简介信息可能带有<pre>标签,导致安卓上的内容只能一行滑动展示,但是ios有对这个标签做特殊处理: 分析: <pre> 标签是 HTML 中用于表示预格式化文本的标签,它的作用是保留文本中的空格、换行和缩进。它的全称是 preformatted text…

Pencils Protocol 上线新板块 Auction,生态版图进一步完善

Pencils Protocol 上线了又一新产品板块 Auction&#xff0c;预示着生态版图的进一步完善&#xff0c;该板块的推出无论是对于 Pencils Protocol 协议本身&#xff0c;还是 Scroll 生态都是极为重要的。 社区正在成为主导加密市场发展的重要力量 自 DeFi Summer 以来&#xff…

人才流失预测模型(机器学习)

1. 项目描述 ​ 企业的快速发展离不开人才的支撑&#xff0c;可是现在我国的企业的人才流失严重&#xff0c;人才流失问题现在已经成为了关系企业发展的一个重大的问题。这些企业要想在目前激烈的竞争中快速发展&#xff0c;就需要依靠自身的人力资源的来竞争。只有拥有比对方…

掌握核密度图:精准描绘不同年龄段的血糖分布

在医学研究中&#xff0c;数据的可视化是理解复杂信息和做出科学决策的关键。今天&#xff0c;我们将深入探讨一种强大的数据可视化工具——核密度图&#xff08;Kernel Density Plot&#xff0c;简称KDE&#xff09;&#xff0c;并通过Python代码实例&#xff0c;展示如何基于…

C++ 语言实现读写.csv文件.xls文件

C 语言实现读写.csv文件.xls文件 C 语言实现读.csv文件.xls文件 VNAM1_24100078.csv 文件内容&#xff1a; #include <stdio.h> #include <windows.h> #include <iostream> #include <string> #include <fstream> #include <sstream> #i…

萤石设备视频接入平台EasyCVR海康私有化视频平台监控硬盘和普通硬盘有何区别?

在现代安防监控领域&#xff0c;对于数据存储和视频处理的需求日益增长&#xff0c;特别是在需要长时间、高稳定性监控的环境中&#xff0c;选择合适的存储设备和监控系统显得尤为重要。本文将深入探讨监控硬盘与普通硬盘的区别&#xff0c;并详细介绍海康私有化视频平台EasyCV…

Ubuntu 的 ROS2 操作系统turtlebot3环境搭建

引言 本文介绍如何在 Ubuntu 系统上为 TurtleBot3 配置 ROS2 环境&#xff0c;提供详细的操作步骤以便在 PC 端控制 TurtleBot3。 本文适用于 ROS2 Humble 的安装与配置&#xff0c;涵盖必要的依赖包和 Gazebo 仿真环境的设置&#xff0c;帮助用户避免在环境搭建过程中遇到的兼…

探索 Seata 分布式事务

Seata&#xff08;Simple Extensible Autonomous Transaction Architecture&#xff09;是阿里巴巴开源的一款分布式事务解决方案&#xff0c;旨在帮助开发者解决微服务架构下的分布式事务问题。它提供了高效且易于使用的分布式事务管理能力&#xff0c;支持多种事务模式&#…

ESLint 使用教程(四):ESLint 有哪些执行时机?

前言 ESLint 作为一个静态代码分析工具&#xff0c;可以帮助我们发现和修复代码中的问题&#xff0c;保持代码风格的一致性。然而&#xff0c;ESLint的最佳实践不仅仅在于了解其功能&#xff0c;更在于掌握其执行时机。本文将详细介绍ESLint在不同开发阶段的执行时机&#xff…

关于分治法左右区间单调遍历应该如何设计

阅读以下文章&#xff0c;首先至少要求通过一道分治法的题目或听过一道该类型的讲解。 对于分治的题目&#xff0c;想必你应该知道&#xff0c;通常我们是对于一个区间拆分两个部分&#xff0c;而最小子问题通常是只包含一个元素的区间数组。为了后续方便处理更大范围的区间&am…