5G 现网信令参数学习(3) - RrcSetup(1)

目录

1. rlc-BearerToAddModList

1.1 rlc-Config

1.1.1 ul-AM-RLC

1.1.2 dl-AM-RLC

1.2 mac-LogicalChannelConfig

2. mac-CellGroupConfig

2.1 schedulingRequestConfig

2.2 bsr-Config 

2.3 tag-Config

2.4 phr-Config

2.5 skipUplinkTxDynamic

3. physicalCellGroupConfig

3.1 p-NR-FR1

3.2 pdsch-HARQ-ACK-Codebook


RRCSetup消息主要包含radioBearerConfigmasterCellGroup两个IE,其中radioBearerConfig包含了SRB1的配置

radioBearerConfig 
{srb-ToAddModList {{srb-Identity 1,pdcp-Config {t-Reordering ms3000}}}
},

masterCellGroup则包含了较为复杂的内容,下面重点描述这个IE。

masterCellGroup在RRC协议中的IE类型是CellGroupConfig,这个IE可以用于配置主小区组(master cell group ,MCG)或者辅小区组(secondary cell group,SCG)。该IE可以由一个MAC实体、逻辑信道集、一个主小区(SpCell)以及一个或多个辅小区(SCells)构成。

其中,cellGroupId用于标识这个小区组,取值范围0~maxSecondaryCellGroups。在当前协议版本中(R18),maxSecondaryCellGroups = 3。示例中,该参数的值为0

cellGroupId 0,

1. rlc-BearerToAddModList

示例中,这个list只有一个RLC-BearerConfig,即SRB1的无线承载配置。

logicalChannelIdentityBearer

无线承载对应的逻辑信道ID,示例中为1

servedRadioBearer

对应的无线承载,可以是SRB或者DRB,示例中为SRB1

logicalChannelIdentity 1,
servedRadioBearer srb-Identity : 1,

1.1 rlc-Config

RLC配置可以分为AM或者UM两种模式。示例中的SRB1必然是一个AM配置。

rlc-Config am : 
{ul-AM-RLC {sn-FieldLength size12,t-PollRetransmit ms40,pollPDU infinity,pollByte infinity,maxRetxThreshold t32},dl-AM-RLC {sn-FieldLength size12,t-Reassembly ms40,t-StatusProhibit ms0}
},

1.1.1 ul-AM-RLC

sn-FieldLength

指示RLC PDU的序列号(长度)。对于RLC AM而言,仅有size12size18两种,见38.322 6.2.2.4。示例中为size12,表示序列号长度为12比特,因此序列号取值范围为0~4095。

t-PollRetransmit

RLC AM中用于Poll机制的一个定时器,单位:ms。示例中的值为40ms。

Poll机制是RLC AM中一种用于检测接收端是否正确地收到了数据包的机制,它是一种反馈机制。大致如下:

  • 发送端发送一个带有poll bit的RLC PDU,其中polling bit设置在RLC header中
  • 接收端收到这个poll bit时,会反馈一个Status PDU,包含所有已经ACK或者NACK的PDU。其中ACK表示正确地接收了这个PDU,NACK表示错误或者丢失的PDU
  • 发送端接收这个Status PDU,并决定是否对所有NACK的PDU进行重传

pollPDU

该参数用于在poll机制中、决定是否设置一个Poll,见38.322 5.3.3.2

该参数如果取值p4则对应4个PDUs,p8对应8个PDUs;示例中的infinity则对应无限个PDUs,即不通过PDU_WITHOUT_POLL的计数来添加Poll。

pollByte

和前面的参数pollPdu作用类似,只是门限值为bytes。

该参数如果取值kB25则对应25 kBytes,kB50对应50 kBytes;示例中的infinity则对应无限bytes,即不通过BYTE_WITHOUT_POLL的计数来添加Poll。

maxRetxThreshold

该参数用于在发送端限制一个RLC SDU的重传次数。当重传次数达到这个最大值门限时,RLC会向上层报告重传次数达到最大(见38.322 5.3.2),上层一般会Call drop。

该参数的值tx表示有x次重传,示例中t32表示最大32次重传。

1.1.2 dl-AM-RLC

sn-FieldLength

ul-AM-RLC中的sn-FieldLength

t-Reassembly

重新组装(Reassembly)的定时器,单位ms。

在RLC层,分段(Segmentation)和组装(Reassembly)是一对互逆的过程。RLC层其中一个职能是负责数据有序地发送,因此,在接收端,当收到的数据出现顺序错乱时,RLC会等待直到所有有序数据都收到为止,再将所有这些数据段组装(Reassembly)然后提交给上层。有时候,RLC可能一直等不到所有有序数据都到达,为了防止RLC接收端无限制地等下去,因此设置了这个t-Reassembly定时器。当这个定时器超时的时候,即使没有等到所有有序数据到达,RLC也会将受到的数据提交个上层,并更新相关参数。

RLC AM和UM都存在分段(Segmentation)和组装(Reassembly),因此两种模式均有对应的t-Reassembly。示例中的t-Reassembly为ms40,表示定时器超时时长为40ms。

RLC AM的t-Reassembly用法见38.322 5.2.3.2

t-StatusProhibit

该定时器用于AM RLC接收端、决定是否禁止STATUS PDU的发送。只有在该定时器超时的时候,才会产生并发送STATUS PDU。该定时器的详细用法见38.322 5.3.4

示例中的ms0表示该定时器不会运行,即这个定时器不会阻止STATUS PDU的产生和发送。

1.2 mac-LogicalChannelConfig

mac-LogicalChannelConfig 
{ul-SpecificParameters {priority 3,prioritisedBitRate infinity,bucketSizeDuration ms300,logicalChannelGroup 0,schedulingRequestID 0,logicalChannelSR-Mask FALSE,logicalChannelSR-DelayTimerApplied FALSE}
}

LogicalChannelConfig IE中主要包含ul-SpecificParameters这个IE,包含以下参数:

priority

逻辑信道优先级,取值范围1~16,该参数的值越大,优先级越低。见38.321 5.4.3.1.1

prioritisedBitRate

即PBR,MAC层根据上行grant、分配上行数据的令牌桶算法参数之一。该参数表示单位时间内应该给某个逻辑信道分配的数据量(比特数),因此该参数实际上相当于这个逻辑信道的一个保证速率。每个逻辑信道都具有自己的PBR。

示例中,PBR为infinity,表示对当前逻辑信道的保证速率无限大,即尽可能满足。由于该PBR所属的逻辑信道对应的是SRB1,优先级很高(值为3),实际上infinity就是优先且最大满足。另外,按照38.331的描述,对于SRB,prioritisedBitRate也只能设置为infinity。

bucketSizeDuration

即BSD,和PBR一样、也是MAC层令牌桶算法参数之一。该参数表示PBR持续增加的最大时长,即令牌桶的桶深。(PBR x BSD)表示的含义就是当前逻辑信道可以分配的最大比特数。这个当前即指MAC执行当前Logical Channel Prioritization过程的时候。和PBR一样,每个逻辑信道都具有自己的BSD。

示例中,BSD=300ms,由于PBR=infinity,所以这个参数的值在算法中并不是很重要,因为(PBR x BSD)相当于还是“infinity"。

关于令牌桶算法的讲解,可以参考LTE MAC层令牌桶算法_prioritisedbitrate-CSDN博客,协议部分可以参考38.321 5.4.3.1。

logicalChannelGroup

逻辑信道组ID。取值范围0~maxLCG-ID,R18协议下,maxLCG-ID=7。

schedulingRequestID

指示这个逻辑信道的调度请求(SR)配置。这个ID是一个SR配置集合的索引,这个SR配置集合在后面的IE schedulingRequestToAddModList中给出。

logicalChannelSR-Mask

该参数用于控制配置的上行grants(CUG)是否可以触发调度请求(SR)。其中配置的上行grants是指预先配置好的上行grant,比如半持续调度(SPS)。CUG分为type1和type2两种,type1是指通过RRC配置的上行grant,type2是指通过PDCCH配置的上行grant(见38.321 5.8.2)。type1最典型的就是LTE中的SPS,常用于voice等业务;type2用于突发的上行数据。

示例中参数的值为false,表示该逻辑信道没有SR masking,即允许触发SR。

logicalChannelSR-DelayTimerApplied

该参数指示当前逻辑信道在准备触发SR发送的时候,使用应用一个延迟定时器,即logicalChannelSR-DelayTimer。

示例中参数的值为false,表示不应用这个延迟定时器,一旦有SR触发,则立即发送SR。

2. mac-CellGroupConfig

2.1 schedulingRequestConfig

schedulingRequestConfig 
{schedulingRequestToAddModList {{schedulingRequestId 0,sr-ProhibitTimer ms16,sr-TransMax n32}}
},

该IE包含一个schedulingRequestToAddModList和一个schedulingRequestToReleaseList,示例中没有release list。其中,schedulingRequestToAddModList包含了一个由SchedulingRequestToAddMod构成的list。SchedulingRequestToAddMod中的IE如下说明。

schedulingRequestId

当前SR配置的索引,对于某个逻辑信道而言,其对应的SR配置中会携带这个索引(见mac-LogicalChannelConfig中的schedulingRequestID),以便映射到这里对应的SR配置。

示例中,该参数的值为0,且前面mac-LogicalChannelConfig中的schedulingRequestID也为0

sr-ProhibitTimer

这个定时器的作用是,当UE发送一个SR之后,至少在这个定时器给出的时间范围内,不能再次发送SR。

示例中的值ms16,表示16毫秒。

sr-TransMax

表示一个SR的最大发送次数,当超过这个次数后,UE一般会call drop。

一个SR一定会有其对应的MAC PDU,如果这个MAC PDU发送了,则这个SR就会被cancel,SR_COUNTER就会从0开始计数。

示例中的值n32,表示32次。

2.2 bsr-Config 

bsr-Config 
{periodicBSR-Timer sf5,retxBSR-Timer sf320
},

BSR(Buffer Status Report)配置。

periodicBSR-Timer

周期BSR(Periodic BSR)的定时器,顾名思义即周期性发送的BSR。参数值中的"sf"表示子帧。

示例中sf5表示5个子帧。和LTE一样,5G中一个子帧也是1ms,区别是一个子帧包含的slot数不同,和numerology有关。

retxBSR-Timer

我的理解,这个timer的作用是为了给BSR引入“重传”机制。见下面38.321 5.4.5中的描述:

上面这段协议的描述,意思就是当发送了一个BSR之后,就会启动retxBSR-Timer这个定时器。

再看下面这段:

retxBSR-Timer这个定时器超时之后,MAC实体会认为这个BSR对应的逻辑信道具有最高优先级。

将上面两点结合起来,就是一个典型的“重传”机制。

既然有了周期BSR,为什么还要引入BSR重传机制?

需要注意的是,BSR是MAC CE,是需要UL grant才能发送的。如果没有ul grant,即使是周期BSR,也是无法发送的。另一方面,当没有ul grant、同时又有BSR需要发送的时候,只有Regular BSR可以触发SR(调度请求)以期待获取ul grant。

retxBSR-Timer超时后触发的BSR正好是Regular BSR

因此,周期BSR和重传BSR其实是不会互相冲突的。周期BSR用于数据量比较大、且数据流比较平稳的一段时期,此时,由于有稳定和持续不断的ul grant,可以供UE提供周期BSR上报。而重传BSR用于偶发的数据,通过SR/Regular  BSR的机制上报,当首次触发了Regular  BSR之后,也依然无法获取ul grant进行BSR的上报之后,一旦retxBSR-Timer超时,便会再次触发这个BSR(即重传BSR),和首次触发BSR不同的是:此时重新触发的BSR对应的逻辑信道具有最高优先级。

示例中,值sf320即320个子帧,320ms。

2.3 tag-Config

tag-Config 
{tag-ToAddModList {{tag-Id 0,timeAlignmentTimer infinity}}
},

TAG-Config包含两个list

示例中仅有tag-ToAddModList。该list包含一组TAG的配置参数

tag-Id

指示当前SpCell或者SCell的TAG的索引。该值在一个小区组(MCG或者SCG)中是唯一的。

timeAlignmentTimer

该timer定义在38.321中,表示在多长时间范围内MAC实体认为属于该TAG的服务小区是上行时间对齐的。当这个定时器超时时,UE一般会call drop。

示例中,infinity表示该定时器不会超时。

2.4 phr-Config

phr-Config setup : 
{phr-PeriodicTimer sf100,phr-ProhibitTimer sf100,phr-Tx-PowerFactorChange dB1,multiplePHR FALSE,dummy FALSE,phr-Type2OtherCell FALSE,phr-ModeOtherCG virtual
},

该IE用于配置UE的功率余量上报(Power Headroom Report,PHR)的相关参数。

phr-PeriodicTimer

周期PHR的定时器,该定时器超时后,会触发PHR。

示例中sf100表示100个子帧,即100ms。

phr-ProhibitTimer

PHR的禁止定时器,该定时器超时后,如果满足一定条件,会触发PHR。其中,“一定条件”是指对功率余量的影响因素改变了、且达到一定的门限,具体见38.321 5.4.6。

示例中sf100表示100个子帧,即100ms。

phr-Tx-PowerFactorChange

前面提到的“一定条件”中的“门限”,具体见38.321 5.4.6。

示例中的dB1表示1dB。

multiplePHR 

指示功率余量是使用Single Entry PHR MAC CE上报还是使用Multiple Entry PHR MAC CE上报。对于MR-DC以及NR UL CA,网络会配置这个参数为true;否则为false。

示例中,FALSE表示使用Single Entry PHR MAC CE上报。

phr-Type2OtherCell

指示是否为其它MAC实体的SpCell配置type 2的PHR。如果没有E-UTRA MAC实体,网络会设置这个参数为false。

Type 2 PH:UE在其它MAC实体的SpCell上的名义最大发送功率和其UL-SCH/PUCCH发送功率之间的差别。而Type 1PH则是指当前服务小区上的名义和实际发送功率之差。

Type 2 PH用于EN-DC、NE-DC、以及NGEN-DC(4G主站,5G核心网)中的E-UTRA MAC实体。

示例中的FALSE表示没有配置Type 2的PHR,因为示例是一个5G SA的信令。

phr-ModeOtherCG

当配置了DC时,指示其它小区组(MCG或SCG)中激活小区使用的PHR模式(real或者virtual)。如果没有配置DC,即只有一个小区组时,该字段会被忽略。

从38.321中对于此参数的描述来看,只有当该参数的值为real时才会有意义,协议中没有virtual对应的行为。

示例中的值为virtual,表示没有特别的行为,当前由于示例为SA的信令,该字段本身也会被忽略。

2.5 skipUplinkTxDynamic

skipUplinkTxDynamic FALSE

该参数指示在某些条件满足的情况下、是否跳过上行发送。这些条件定义在38.321 5.4.3.1.3中,

简单来说,就是当UE获得了ul grant之后,如果没有A-CSI请求、且没有用户数据、且没有重要的MAC CE(仅有周期BSR或者padding BSR),则UE会跳过此次上行发送。

示例中,该参数的值配置为FALSE,表示不会跳过上行发送。

3. physicalCellGroupConfig

physicalCellGroupConfig 
{p-NR-FR1 23,pdsch-HARQ-ACK-Codebook dynamic
},

3.1 p-NR-FR1

在FR1频段、在当前NR小区组中的所有服务小区中、UE最大的发送功率。UE最大发送功率同时也会收到p-Max(配置在FrequencyInfoUL中)、以及p-UE-FR1(FR1上UE在所有服务小区上的总功率)的限制

示例中23表示23dBm。

3.2 pdsch-HARQ-ACK-Codebook

该参数指示PDSCH的HARQ-ACK码本、是半静态还是动态产生的。

  • Semi-Static:半静态码本, 也称为Type-1 HARQ-ACK codebook。即UE根据RRCPDSCH相关半静态配置, 生成需要发送的半静态的HARQ-ACK码本。
  • dynamic:动态码本, 也称为Type-2 HARQ-ACK codebook。即UE根据DCI下行动态调度的情况, 生成需要发送的动态HARQ-ACK码本

关于semi-static和dynamic码本的具体含义,比较复杂,详见38.213 9.1。

示例中参数的值为dynamic,指示使用动态HARQ-ACK码本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/469821.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣 LeetCode 27. 移除元素(Day1:数组)

解题思路: 注意:数组只能覆盖,不能删除 erase方法的复杂度为O( n )而不是O( 1 ),因为需要把删除后后面的数组向前移动 方法一:双层for循环暴力 方法二:快慢指针 fast表示新数组的元素 slow表示新数组元…

Redis - String 字符串

一、基本认识 字符串类型是Redis最基础的数据类型,关于字符串需要特别注意: Redis中所有的键的 类型都是字符串类型,⽽且其他⼏种数据结构也都是在字符串类似基础上构建的,例如列表和集合的 元素类型是字符串类型,所…

树-好难-疑难_GPT

// // Created by 徐昌真 on 2024/11/10. // #include <iostream> using namespace std;template<typename T> struct ListNode{ //新建链表节点T data; //指向下一个子节点 ListNode< TreeNode<T>* > childHead; 这里的 T 是TreeNde类型的…

Mysql数据类型面试题15连问

整数类型的 UNSIGNED 属性有什么用&#xff1f; MySQL 中的整数类型可以使用可选的 UNSIGNED 属性来表示不允许负值的无符号整数。使用 UNSIGNED 属性可以将正整数的上限提高一倍&#xff0c;因为它不需要存储负数值。 例如&#xff0c; TINYINT UNSIGNED 类型的取值范围是 0 ~…

【go从零单排】Mutexes互斥锁

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 &#x1f4d7;概念 在 Go 语言中&#xff0c;互斥锁&#xff08;Mutex&#xff09;是一种用于保护共…

LLM时代下Embedding模型如何重塑检索、增强生成

文章目录 一、背景二、C-MTEB评测结果三、性能不错的向量模型腾讯Conan系列阿里GTE系列商汤Piccolo系列合合信息acge系列智源BGE系列数元灵Dmeta系列jina系列OpenAI系列 四、业务中选择向量模型有哪些考量五、洞察与总结为什么需要RAG和Embedding向量化技术&#xff1f;RAG 和 …

[SWPUCTF 2022 新生赛]Power! 反序列化详细题解

知识点: PHP反序列化(执行顺序) 构造POP链 代码审计 题目主页: 输入框可以输入内容,习惯性先查看一下页面的源代码,收集信息 发现源码中有提示参数source 先不急,再看一下其他信息 是apache服务器,php版本为7.4.30 url传参 ?sourceindex.php 回显了index.php的源码 …

【go从零单排】Rate Limiting限流

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 &#x1f4d7;概念 在 Go 中&#xff0c;速率限制&#xff08;Rate Limiting&#xff09;是一种控制…

【GPTs】MJ Prompt Creator:轻松生成创意Midjourney提示词

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | GPTs应用实例 文章目录 &#x1f4af;GPTs指令&#x1f4af;前言&#x1f4af;MJ Prompt Creator主要功能适用场景优点缺点 &#x1f4af; 小结 &#x1f4af;GPTs指令 中文翻译&#xff1a; 任务说明 您是一款为幻灯片工…

Android Profiler 内存分析

Android studio&#xff08;下面简称AS&#xff09;为App提供的性能分析工具&#xff0c;在AS3.0替换掉旧的分析工具&#xff0c;对于其使用方法&#xff0c;官方也有对应的介绍&#xff1a;Android Profiler 对于使用方法&#xff0c;我只用到比较简单的功能&#xff0c;高级的…

[ Linux 命令基础 3 ] Linux 命令详解-文件和目录管理命令

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

HTMLCSS: 实现可爱的冰墩墩

效果演示 HTML <div class"wrap"><div class"body"></div><div class"ear"></div><div class"ear rightEar"></div><div class"leftHand"></div><div class"…

【电力系统】永磁同步电机调速系统带有扰动观测器

【电力系统】永磁同步电机调速系统带有扰动观测器( DOB)的最优滑模控制、改进补偿滑模控制、传统滑模、PID控制研究 摘要 本文研究了永磁同步电机&#xff08;PMSM&#xff09;调速系统中的不同控制策略&#xff0c;包括最优滑模控制、改进补偿滑模控制、传统滑模控制以及PID控…

TVM计算图分割--分割方式

文章目录 TVM中的计算图分割方式1. Partition Pass2. dataflow_pattern3. 内置图分割接口4. Pipeline Executor5. BYOC框架6. Collage7. UMA深度学习模型通常是用计算图来表示的。计算图是一种有向无环图,其中节点代表算子,表示一个操作,节点之间的边表示算子之间的数据依赖…

如何使用IDEA创建Maven/SSM工程?

鉴于很多学校还在教授SSMJSP&#xff0c;很多同学不会使用IDEA创建Maven工程&#xff0c;这里进行说明 windows下安装jdk并配置环境 添加链接描述Windows下安装Maven并配置环境 首先你要本地安装jdk&#xff0c;Maven并配置基础环境变量&#xff0c;然后对IDEA进行jdk、Mave…

大数据新视界 -- 大数据大厂之 Impala 性能优化:优化数据加载的实战技巧(下)(16/30)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

从0开始机器学习--Day23--支持向量机

经过前面的学习&#xff0c;我们已经知道在解决问题时&#xff0c;重要的不仅仅是要在算法A或算法B中选择更优的&#xff0c;而是考虑怎么选择用于学习算法的特征和正则化参数&#xff0c;相比神经网络和逻辑回归&#xff0c;支持向量机在这两个方面做得更好。 优化目标(Optimi…

macOS 设置固定IP

文章目录 以太网Wifi![请添加图片描述](https://i-blog.csdnimg.cn/direct/65546e966cae4b2fa93ec9f0f87009d8.png) 基于 macOS 15.1 以太网 Wifi

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法

类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数&#xff1a;返回值&#xff1a;示例代码&#xff1a; isnull不会检查空字符串 数据准备 有一组数据信息如下&#xff0c;其中主要将TotalCharges、MonthlyC…

HarmonyOS Next 实战卡片开发 02

HarmonyOS Next 实战卡片开发 02 卡片开发中&#xff0c;还有一个难点是显示图片。其中分为显示本地图片和显示网络图片 显示本地图片 卡片可以显示本地图片&#xff0c;如存放在应用临时目录下的图片。路径比如 /data/app/el2/100/base/你的项目boundleName/temp/123.png 以…