时序论文20|ICLR20 可解释时间序列预测N-BEATS

论文标题:N-BEATS N EURAL BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES FORECASTING

论文链接:https://arxiv.org/pdf/1905.10437.pdf

前言

为什么时间序列可解释很重要?时间序列的可解释性是确保模型预测结果可靠、透明且易于理解的关键因素。它帮助增强用户信任,促进更明智的决策,同时便于调试和风险管理,特别是在特定领域,例如风险投资、医疗诊断等领域,理解模型背后的逻辑非常重要,毕竟谁也不敢把决策权交给一个黑盒模型。

本文设计了一种深度神经网络架构N-BEATS,它以残差连接前后向链接和深层全连接层堆叠为核心。这一架构不仅具备高度的可解释性,而且能够广泛适用于多个领域,模型的配置完全没有依赖于特定于时间序列的特性,却能在多样化的数据集上展现出卓越的性能(与2020年的模型相比),证明了深度学习的基本构件,比如残差块,本身就具有解决广泛预测问题的能力。此外,本文还展示了如何通过增强架构,实现在不牺牲准确性的前提下,提供可解释的输出。

本文模型

本文的目的是构造一个简单、可解释性强的深度学习时间序列预测模型,问题的场景是一维、单变量时序预测。

上图是所提出的架构,以多层全连接(FC)网络为基础构建block,该网络采用ReLU激活函数来引入非线性特性。每个block负责预测正向(预测)和反向(反预测)的基础扩展系数,分别用θf和θb表示。这些block通过一种创新的双重残差堆叠方法进行组织,允许在堆叠中的不同层共享预测和反预测的函数。预测结果通过一种分层聚合的方式进行整合,这不仅促进了网络深度的增加,还确保了模型输出的可解释性,使模型能够构建出一个既深入又易于理解的深度神经网络。

模型要点1: DOUBLY RESIDUAL STACKING

经典残差网络架构在将结果传递给下一个堆叠之前,将堆叠层的输入加到其输出上,这类方法在提高深度架构的可训练性方面提供了明显优势。缺点是导致网络结构难以解释。本文作者提出了一种分层双重残差拓扑结构,如图(中间和右侧)所示。所提出的架构有两个残差分支,一个在每层的反预测上运行,另一个在每层的预测分支上运行。

第一个block特殊,它的输入是模型级别的输入x。对于所有其他block,每个block有两个输入:backcast和forecast,分别理解为过去和未来的信息。也就是说经过上一个block后,下一个block的输入是上一个block的输入减去上一个block的backcast输出,由于前一个block移除了它能够很好地近似的信号部分,使得下游block的预测工作变得更容易。每个块输出一个部分预测y^(θ),该预测首先在堆叠层面上聚合,然后在整体网络层面上聚合,是一种分层分解架构。最终预测Y是所有部分预测的总和,通过聚合有意义的部分预测来实现可解释性的关键重要性。具体技术细节可阅读原文。

模型要点2: Interpretablity

论文中提到了基(basis)这个概念,可以理解为将基根据系数来加权组合,就可以从系数的权重对应出哪个基与输出结果的相关性更强。例如:趋势的典型特征是,大部分时间它是一个单调函数,或者至少是一个变化缓慢的函数。季节性的典型特征是它是规律的、循环的、周期性变化。

这样的话,将正弦曲线设置为基就可以表示一些季节性的分量,将多项式设置为基就可以表示一些趋势性的分量。把基加权线性相加,即可得到预测Forecast或者是Backcast。

结论

提出一种单变量时间序列(TS)预测架构,并通过实证验证了其有效性。验证了两个重要假设:(i)通用的深度学习方法在不使用时间序列领域知识的情况下,在异构单变量时间序列预测问题上表现出色,(ii)可以额外约束深度学习模型,迫使其将预测分解为不同的、人类可解释的输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/471329.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

硬件工程师之电子元器件—二极管(4)之热量对二极管温度特性的影响

写在前面 本系列文章主要讲解二极管的相关知识,希望能帮助更多的同学认识和了解二极管。 若有相关问题,欢迎评论沟通,共同进步。(*^▽^*) 二极管 7. 热量对二极管温度特性的影响 半导体器件的电气特性通常对环境温度和工作结温敏感。 Si二极管的特性在工作范围内通常如下…

Java算法OJ(7)随机快速排序

目录 1.前言 2.正文 1. 快速排序的基本原理 2. 随机快速排序的改进 3. 随机快速排序的步骤 3.小结 1.前言 哈喽大家好吖,今儿给大家带来算法—随机快速排序相关知识点,废话不多说让我们开始。 2.正文 在了解随机快排之前,先了解一下…

基于 Python Django 的二手房间可视化系统分析

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

用MVVM设计模式提升WPF开发体验:分层架构与绑定实例解析

MVVM(Model-View-ViewModel)是一种架构模式,广泛应用于现代前端开发,尤其是在微软的WPF(Windows Presentation Foundation)应用程序中。它旨在通过将视图(UI)与业务逻辑(…

如何进行产线高阶能耗数据的计算和可视化?

一、前言 在当前经济下行时期,越来越来多企业开始对产线进行数字化转型,提高企业竞争力。在产线数字化转型过程中,产线高阶能耗数据的计算和可视化是比较重要的一环,今天小编就和大家分享如何对产线能耗数据进行计算和可视化。 …

亲测有效:Maven3.8.1使用Tomcat8插件启动项目

我本地maven的settings.xml文件中的配置&#xff1a; <mirror><id>aliyunmaven</id><mirrorOf>central</mirrorOf><name>阿里云公共仓库</name><url>https://maven.aliyun.com/repository/public</url> </mirror>…

开源项目推荐——OpenDroneMap无人机影像数据处理

实景三维作为GIS最火的课题&#xff0c;最近在想做一套自己的三维构建工具&#xff0c;考察了几个开源项目&#xff0c;把自己的搜索过程用csdn记录下来&#xff0c;希望也能帮助到各位同仁。 OpenDroneMap&#xff08;ODM&#xff09;是一个开源项目&#xff0c;旨在处理无人…

蓝桥杯c++算法学习【2】之搜索与查找(九宫格、穿越雷区、迷宫与陷阱、扫地机器人:::非常典型的必刷例题!!!)

别忘了请点个赞收藏关注支持一下博主喵&#xff01;&#xff01;&#xff01; 关注博主&#xff0c;更多蓝桥杯nice题目静待更新:) 搜索与查找 一、九宫格 【问题描述】 小明最近在教邻居家的小朋友小学奥数&#xff0c;而最近正好讲述到了三阶幻方这个部分&#xff0c;三 …

Nuxt.js 应用中的 schema:beforeWrite 事件钩子详解

title: Nuxt.js 应用中的 schema:beforeWrite 事件钩子详解 date: 2024/11/14 updated: 2024/11/14 author: cmdragon excerpt: schema:beforeWrite 钩子是 Vite 提供的一个功能强大的生命周期钩子,允许开发者在 JSON Schema 被写入之前执行自定义操作。利用这个钩子,您可以…

当你想要conda安装遇到UnavailableInvalidChannel: HTTP 404 NOT FOUND for channel的问题

想要装个虚拟环境&#xff0c;结果遇到404。 看了第一个GitHub帖子中的一句话 UnavailableInvalidChannel: The channel is not accessible or is invalid. Navigator not launching. Issue #9473 conda/conda GitHub 想说那我就把这个not found的channel删掉吧&#xff…

DAY112代码审计PHP开发框架POP链利用Yii反序列化POP利用链

一、pop1链的跟踪 1、路由关系 2、漏洞触发口unserialize(base64_decode($data)); 2、__destruct()&#xff0c;魔术法方法调用close函数方法 3、未找到利用链&#xff0c;尝试__call魔术方法 4、逆推找call_user_func 函数 第一部分 namespace yii\db; class BatchQueryResu…

C++STL容器——map和set

目录 一.关联式容器 二.键值对 三.树形结构的关联式容器 1.set 2.map 3.multiset和multimap 四.整体代码 map_set.cpp 一.关联式容器 在初阶阶段&#xff0c;我们已经接触过STL中的部分容器&#xff0c;比如&#xff1a;vector、list、deque、 forward_list(C11)等&…

Java 责任链模式 减少 if else 实战案例

一、场景介绍 假设有这么一个朝廷&#xff0c;它有 县-->府-->省-->朝廷&#xff0c;四级行政机构。 这四级行政机构的关系如下表&#xff1a; 1、县-->府-->省-->朝廷&#xff1a;有些地方有完整的四级行政机构。 2、县-->府-->朝廷&#xff1a;直…

Rocky、Almalinux、CentOS、Ubuntu和Debian系统初始化脚本v9版

Rocky、Almalinux、CentOS、Ubuntu和Debian系统初始化脚本 Shell脚本源码地址&#xff1a; Gitee&#xff1a;https://gitee.com/raymond9/shell Github&#xff1a;https://github.com/raymond999999/shell脚本可以去上面的Gitee或Github代码仓库拉取。 支持的功能和系统&am…

EXCEL延迟退休公式

如图&#xff1a; A B为手工输入 C2EOMONTH(A2,B2*12) D2EOMONTH(C2,IF(C2>DATEVALUE("2025-1-1"),INT((DATEDIF(DATEVALUE("2025-1-1"),C2,"m")4)/4),0)) E2EOMONTH(A2,B2*12IF(EOMONTH(A2,B2*12)>DATEVALUE("2025-1-1"),INT(…

ARM架构中断与异常向量表机制解析

往期内容 本专栏往期内容&#xff0c;interrtupr子系统&#xff1a; 深入解析Linux内核中断管理&#xff1a;从IRQ描述符到irq domain的设计与实现Linux内核中IRQ Domain的结构、操作及映射机制详解中断描述符irq_desc成员详解Linux 内核中断描述符 (irq_desc) 的初始化与动态分…

论文翻译 | The Capacity for Moral Self-Correction in Large Language Models

摘要 我们测试了一个假设&#xff0c;即通过人类反馈强化学习&#xff08;RLHF&#xff09;训练的语言模型具有“道德自我纠正”的能力——避免产生有害的输出——如果指示这样做的话。我们在三个不同的实验中发现了支持这一假设的有力证据&#xff0c;每个实验都揭示了道德自…

华为云前台用户可挂载数据盘和系统盘是怎么做到的?

用户可以选择磁盘类型和容量&#xff0c;其后台是管理员对接存储设备 1.管理员如何在后台对接存储设备&#xff08;特指业务存储&#xff09; 1.1FusionSphere CPS&#xff08;Cloud Provisionivice&#xff09;云装配服务 它是first node https://10.200.4.159:8890 对接存…

【Excel】身份证号最后一位“X”怎么计算

大多数人身份证号最后一位都是数字&#xff0c;但有个别号码最后一位却是“X"。 如果你查百度&#xff0c;会得到如下答案&#xff1a; 当最后一位编码是10的时候&#xff0c;因为多出一位&#xff0c;所以就用X替换。 可大多数人不知道的是&#xff0c;这个10是怎么来的…

【常见问题解答】远程桌面无法复制粘贴的解决方法

提示:“奔跑吧邓邓子” 的常见问题专栏聚焦于各类技术领域常见问题的解答。涵盖操作系统(如 CentOS、Linux 等)、开发工具(如 Android Studio)、服务器软件(如 Zabbix、JumpServer、RocketMQ 等)以及远程桌面、代码克隆等多种场景。针对如远程桌面无法复制粘贴、Kuberne…