「人眼视觉不再是视频消费的唯一形式」丨智能编解码和 AI 视频生成专场回顾@RTE2024

在这里插入图片描述

你是否想过,未来你看到的电影预告片、广告,甚至新闻报道,都可能完全由 AI 生成?

在人工智能迅猛发展的今天,视频技术正经历着一场前所未有的变革。从智能编解码到虚拟数字人,再到 AI 驱动的视频生成,这一领域的创新正以惊人的速度推进。这些进步不仅提升了技术指标,更为实时互动、内容创作、广告营销等场景带来了全新的可能性。

在本届 RTE2024 实时互联网大会上,来自学界和业界的多位专家深入探讨了视频 AI 技术的最新进展。阿里巴巴达摩院的陈建华、声网的周世付、鹏城实验室的林荣群、双深科技的曹磊、生数科技的张旭东等行业专家分享了他们的研究成果和洞见。

北京大学的马思伟教授和声网视频编解码负责人戴伟分别主持了主题分享和圆桌讨论环节。

在这里插入图片描述

林荣群:AI 时代下的智能视频编解码新思路

在这里插入图片描述

鹏城实验室的林荣群博士以一个问题开篇:「如果视频内容全部由 AI 生成,我们该如何进行编码?」

林博士首先回顾了视频编码的发展历程,从早期以人眼感知为导向的保真度指标,到注重商业评级的阶段,再到如今 AI 时代对智能任务的需求,视频编码的目标不断演变。他指出,未来的智能编码不仅要满足人类视觉体验,更要服务于机器识别、检测等 AI 任务。

在介绍智能编码技术时,林博士强调了两个关键点:智能作为工具,提升我们对编码对象的理解;智能作为目标,服务于下游智能应用。他认为,智能编码的核心挑战在于对场景和对象进行结构化表示。「深入理解压缩对象,才能大幅提升压缩效率。」林博士解释道。

林博士随后详细介绍了几种智能编码的技术路线,包括传统编码与深度学习的融合、全神经网络框架以及生成式编码。他还特别介绍了鹏城实验室在文生视频大模型领域的实践,展示了团队基于国产框架和算力平台的最新成果。

展望未来发展方向,林博士提出了几个关键点:数据处理的重要性、算法优化、模型轻量化以及推理和采样速度的提升。

在这里插入图片描述

周世付:虚拟数字人的发展趋势与技术突破

在这里插入图片描述

声网人工智能算法负责人周世付首先介绍了虚拟数字人的基本概念,指出它是存在于数字空间中,拥有近似真人或卡通人物外貌、行为和特质的角色。一个成功的虚拟数字人需要兼具「好看的皮囊和有趣的灵魂」。

他将虚拟数字人的制作流程概括为三个阶段:建模、驱动和交互。建模阶段利用 AI 技术为特定人物创建模型;驱动阶段运用计算机视觉技术,赋予模型动态的表情和动作;最后,借助大语言模型,实现与虚拟数字人的自然流畅的交互。

展望未来,周世付认为虚拟数字人的发展将呈现四大趋势:

  1. 3D 智能数字人:3D 形式将成为主流,结合大语言模型实现更高级的智能化。
  2. 实时互动:传输表情参数而非图像像素,依靠终端设备重建数字人形象,实现低延迟、高流畅度的互动体验。
  3. 虚实融合:将数字人融入虚拟空间,增强沉浸式互动体验。
  4. 低成本应用:通过技术进步降低计算量和成本,推动数字人在更广泛的场景中应用。

在这里插入图片描述

陈建华:新一代视频编解码标准 VVC 的机遇与挑战

在这里插入图片描述

阿里巴巴达摩院高级算法专家陈建华从一线研发和应用的角度,深入剖析了 VVC(Versatile Video Coding)标准在实际落地过程中的关键问题。

关于 VVC 标准发布四年多来的发展现状,陈建华介绍说,支持 VVC 硬件的芯片正逐渐增多,包括联发科(MediaTek)、瑞昱(RealTek)等厂商均已发布相关产品。基于这些芯片,市场上已经出现了超过 100 款支持 VVC 的智能电视、机顶盒等设备。在软件生态方面,除了标准参考软件 VTM 之外,多个开源编解码器和播放器也已支持 VVC,为开发者提供了丰富的学习和研究资源。

以达摩院自研的 DAMO 266 为例,陈建华介绍了他们在软件解码器优化方面的创新成果。通过异构计算技术,将关键算法迁移到 DSP 等单元,显著降低了功耗,使 VVC 软解码在移动端的性能已接近 H.265 硬解码水平。这不仅扩展了 VVC 的设备覆盖范围,也为其大规模应用扫清了障碍。

在这里插入图片描述

曹磊:AI Codec 将引领视频编解码技术革新

在这里插入图片描述

双深科技 CEO 曹磊指出,在图像和视频大爆发的时代,提升编解码性能是实现降本增效的关键手段。AI 正在计算机视觉领域发挥越来越重要的作用,贯穿从成像到应用的整个过程。如果编解码也能融入 AI,整个流程将更加智能化。

曹磊指出,传统编解码技术发展到 H.266 后,提升空间已趋于平缓,且编码复杂度高,落地困难。相比之下,AI Codec 基于深度学习的端到端编码,能更好地表达细微特征,拥有更大的发展潜力。他引用了团队最新的研究成果,表明他们研发的 ANF 基础模型在平均数据序列上,相比 H.266 的参考软件 VTM,压缩率提升了约 25%,超越了 DCVC 等现有方案。同时,他还介绍了 IEEE 1857.11 HIV 标准,其中双深科技贡献了一项高效的并行熵编码核心专利。

曹磊重点分享了 AI Codec 在移动端落地的实践。为了实现落地,团队致力于模型轻量化,包括模型剪枝、蒸馏和量化等,并在算子定制化部署上投入了大量精力,以适应不同型号的手机 NPU。

在这里插入图片描述

张旭东:AI 视频生成技术的飞跃与实践

在这里插入图片描述

生数科技产品总监张旭东分享了 AI 视频生成技术的最新进展。他带领的团队深耕多模态大模型领域多年,亲历了从 GPT-3 到 ChatGPT 的技术变革,以及从图像生成到视频生成的跨越式发展。

张旭东回顾了团队在视频生成领域的探索历程。早在 2022 年,他们就提出了 U-ViT 框架,这一架构与后来备受瞩目的 Sora 有着诸多相似之处,其核心优势在于能够进行连续预测,从而获得更佳的一致性和效果。

生数科技的视频生成模型在实践中展现出多项显著优势:

  1. 强大的语义理解能力:能够精准捕捉复杂的场景描述。
  2. 多镜头语言支持:实现镜头间的流畅过渡。
  3. 极致的推理速度:仅需 30 秒即可生成一段视频。
  4. 出色的一致性表现:在不同场景中保持人物形象、动物特征等元素的一致性。
  5. 参考图像支持:可以根据提供的商品图、人物照片等生成相关视频。

这些特性赋予 AI 生成视频在广告制作、影视宣发等领域巨大的应用潜力。张旭东以动画电影《熊猫呼呼》和科幻电影《毒液》的宣传视频为例,展示了 AI 技术如何将原本 1-2 天的制作周期压缩至 3 小时内,极大地提升了效率。

在这里插入图片描述

圆桌讨论:视频生成的 ChatGPT 时刻何时到来?

在这里插入图片描述
在这里插入图片描述

在主题是「视频生成的 ChatGPT 时刻何时到来」的圆桌讨论中,声网视频编解码负责人戴伟担任主持人,邀请了包括始智 AI wisemodel 创始人刘道全、声网人工智能算法负责人周世付、生数科技联合创始人张旭东以及学界代表马思伟教授等嘉宾参与讨论。

在这里插入图片描述

刘道全认为,真正的「视频生成的 ChatGPT 时刻」需要融合图像、文本和语音等多种模态,生成完整的视频。目前的难点在于 多模态融合 ,但随着 LLaMA-Omni 等音频语言模型的出现,这种融合正在加速,未来可期。他还提到了始智 AI 在开源社区的贡献,例如 Sora 复刻计划,鼓励大家共同探索。

张旭东则对未来充满乐观。他认为,从技术的可用性来看,视频生成已经不再像过去那样生成不可用的内容,甚至已经与索尼等国际大 IP 达成合作,解决实际问题。但他指出,成本和渗透率仍然是制约因素 。目前单次视频生成的成本较高,限制了大规模应用。随着算力提升和算法优化,成本下降,渗透率将会提高,真正的「视频生成的 ChatGPT 时刻」也将到来。

周世付则从交互角度出发,认为 以语音交互为基础 ,结合大语言模型和数字人,或许会更快地推动「视频生成的 ChatGPT 时刻」的到来。

马思伟老师补充道,虽然视频生成面临一致性、时长等技术挑战,但从应用模式和技术发展来看,一些公司例如生数科技、智谱 AI 的 会员付费模式 ,既带来了资金支持,也积累了训练数据,形成了良性循环,推动着技术的进步。他乐观地认为,2024 年或许可以视为「视频生成 ChatGPT 时刻」的开端。

当机器也开始「生产」和「观看」视频,视频的意义将被重新定义。RTE2024 大会让我们思考,在人眼视觉之外,视频还能为我们带来什么?在机器视觉的时代,视频技术又将如何发展?这些问题,或许正是未来视频技术探索的方向。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/471671.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】每日一题 2024_11_14 统计好节点的数目(图/树的 DFS)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动! 题目:统计好节点的数目 代码与解题思路 先读题:题目要求我们找出好节点的数量,什么是好节点?“好节点的所有子节点的数量都是相同的”,拿示例一…

js中typeOf无法区分数组对象

[TOC](js中typeOf无法区分数组对象) 前提:很多时候我们在JS中用typeOf来判断值类型,如:typeOf ‘abc’//string ,typeOf 123 //number; 但当判断对象为数组时返回的仍是’object’ 这时候我们可以使用Object.prototype.toString.c…

ISUP协议视频平台EasyCVR视频设备轨迹回放平台智慧农业视频远程监控管理方案

在当今快速发展的农业领域,智慧农业已成为推动农业现代化、助力乡村全面振兴的新手段和新动能。随着信息技术的持续进步和城市化进程的加快,智慧农业对于监控安全和智能管理的需求日益增长。 视频设备轨迹回放平台EasyCVR作为智慧农业视频远程监控管理方…

android studio 更改gradle版本方法(备忘)

如果出现类似以下: Your build is currently configured to use Java 17.0.11 and Gradle 6.1.1. 或者类似: Failed to calculate the value of task ‘:app:compileDebugJavaWithJavac‘ property ‘options.generatedSo 消息时需要修改gradle版本&…

使用 Vision 插件让 GitHub Copilot 识图问答

GitHub Copilot 是一个由 GitHub 和 OpenAI 合作开发的人工智能代码提示工具。它可以根据上下文提示代码,还可以回答各种技术相关的问题。GitHub Copilot 在刚刚召开的全球技术大会上宣布升级了 GitHub Copilot 背后的大语言模型,现在已经正式启用 GPT 4…

LeetCode面试经典150题C++实现,更新中

用C实现下面网址的题目 https://leetcode.cn/problems/merge-sorted-array/?envTypestudy-plan-v2&envIdtop-interview-150 1、数组\字符串 88合并两个有序数组 以下是使用 C 实现合并两个有序数组的代码及测试用例 C代码实现 #include <iostream> #include &l…

HarmonyOS NEXT应用开发实战 ( 应用的签名、打包上架,各种证书详解)

前言 没经历过的童鞋&#xff0c;首次对HarmonyOS的应用签名打包上架可能感觉繁琐。需要各种秘钥证书生成和申请&#xff0c;混在一起也分不清。其实搞清楚后也就那会事&#xff0c;各个文件都有它存在的作用。 HarmonyOS通过数字证书与Profile文件等签名信息来保证鸿蒙应用/…

Serverless架构在实时数据处理中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 Serverless架构在实时数据处理中的应用 Serverless架构在实时数据处理中的应用 Serverless架构在实时数据处理中的应用 引言 Ser…

Mysql篇-三大日志

概述 undo log&#xff08;回滚日志&#xff09;&#xff1a;是 Innodb 存储引擎层生成的日志&#xff0c;实现了事务中的原子性&#xff0c;主要用于事务回滚和 MVCC。 redo log&#xff08;重做日志&#xff09;&#xff1a;是 Innodb 存储引擎层生成的日志&#xff0c;实现…

VTK知识学习(8)-坐标系统

1、概述 计算机图形学里常用的坐标系统有4种&#xff1a; 1&#xff09;、Model坐标系统。定义模型时所采用的坐标系统&#xff0c;通常是局部的笛卡儿坐标系。 2&#xff09;、World坐标系统。是放置Actor的三维空间坐标系。 Actor&#xff08;vtkActor类&am…

「QT」窗口类 之 QWidget 窗口基类

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「QT」QT5程序设计&#x1f4da;全部专栏「Win」Windows程序设计「IDE」集成开发环境「UG/NX」BlockUI集合「C/C」C/C程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」NX定制…

如何保证Redis与MySQL双写一致性

什么是双写一致性问题&#xff1f; 双写一致性主要指在一个数据同时存在于缓存&#xff08;如Redis&#xff09;和持久化存储&#xff08;如MySQL&#xff09;的情况下&#xff0c;任何一方的数据更新都必须确保另一方数据的同步更新&#xff0c;以保持双方数据的一致状态。这一…

sealos部署K8s,安装docker时master节点突然NotReady

1、集群正常运行中&#xff0c;在集群master-1上安装了dockerharbor&#xff0c;却发现master-1节点NotReady&#xff0c;使用的网络插件为 Cilium #安装docker和harbor&#xff08;docker运行正常&#xff09; rootmaster-1:/etc/apt# apt install docker-ce5:19.03.15~3-0~u…

干货分享之Python爬虫与代理

嗨伙伴们&#xff0c;今天是干货分享哦&#xff0c;可千万不要错过。今天小蝌蚪教大家使用phthon时学会巧妙借用代理ip来更好地完成任务。 让我们先了解一下为什么说咱们要用爬虫代理ip呢&#xff0c;那是因为很多网站为了防止有人过度爬取数据&#xff0c;对自身资源造成损害…

【JavaEE初阶 — 多线程】死锁的产生原因和解决方法

目录 死锁 1.构成死锁的场景 (1) 一个线程一把锁 问题描述 解决方案(可重入锁) (2) 两个线程两把锁 问题描述 (3)N个线程 M把锁 哲学家就餐问题 2.死锁的四个必要条件 3.如何解决死锁问题 (1)避免出现请求和保持 (2)打破多个线程的循环等待关系 死锁…

【视觉SLAM】1-概述

读书笔记 文章目录 1. 经典视觉SLAM框架2. 数学表述2.1 运动方程2.2 观测方程2.3 问题抽象 1. 经典视觉SLAM框架 传感器信息读取&#xff1a;相机图像、IMU等多源数据&#xff1b;前端视觉里程计&#xff08;Visual Odometry&#xff0c;VO&#xff09;&#xff1a;估计相机的相…

探索 Python HTTP 的瑞士军刀:Requests 库

文章目录 探索 Python HTTP 的瑞士军刀&#xff1a;Requests 库第一部分&#xff1a;背景介绍第二部分&#xff1a;Requests 库是什么&#xff1f;第三部分&#xff1a;如何安装 Requests 库&#xff1f;第四部分&#xff1a;Requests 库的基本函数使用方法第五部分&#xff1a…

Redisson的可重入锁

初始状态&#xff1a; 表示系统或资源在没有线程持有锁的情况下的状态&#xff0c;任何线程都可以尝试获取锁。 线程 1 获得锁&#xff1a; 线程 1 首次获取了锁并进入受保护的代码区域。 线程 1 再次请求锁&#xff1a; 在持有锁的情况下&#xff0c;线程 1 再次请求锁&a…

基于微信小程序的平安驾校预约平台的设计与实现(源码+LW++远程调试+代码讲解等)

摘 要 互联网发展至今&#xff0c;广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为人们提供服务。针对高校教师成果信息管理混乱&#xff0c;出错率高&#xff0c;信息安全性差&#xff0c;劳动强度大&#xff0c;费时费力…

FFmpeg 4.3 音视频-多路H265监控录放C++开发十三.2:avpacket中包含多个 NALU如何解析头部分析

前提&#xff1a; 注意的是&#xff1a;我们这里是从avframe转换成avpacket 后&#xff0c;从avpacket中查看NALU。 在实际开发中&#xff0c;我们有可能是从摄像头中拿到 RGB 或者 PCM&#xff0c;然后将pcm打包成avframe&#xff0c;然后将avframe转换成avpacket&#xff0…