使用YOLOv9进行图像与视频检测

大家好,YOLOv9 与其前身v8一样,专注于识别和精确定位图像和视频中的对象。本文将介绍如何使用YOLOv9进行图像与视频检测,自动驾驶汽车、安全系统和高级图像搜索等应用在很大程度上依赖于此功能,YOLOv9 引入了比 YOLOv8 更令人印象深刻的创新点。

1.安装必要的库

pip install opencv-python ultralytics

2.导入库

import cv2
from ultralytics import YOLO

3.选择模型型号尺寸

model = YOLO("yolov9c.pt")

这里我们选择yolov9c.pt,大家可以选择不同的模型尺寸进行检测,并比较不同的型号并权衡它们各自的优缺点。

4.编写函数预测和检测图像和视频中的对象

def predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, results

predict() 这个函数采用三个参数:

  • chosen_model :用于预测的训练模型

  • img :要进行预测的图像

  • classes :(可选)要将预测筛选到的类名列表

  • conf :(可选)要考虑的预测的最小置信度阈值

函数首先检查是否提供classes参数。如果是,则使用classes参数调用该chosen_model.predict() 方法,该参数仅将预测筛选为这些类。否则,将调用该 chosen_model.predict() 方法时不带 classes 参数,该参数将返回所有预测。

conf 参数用于筛选出置信度分数低于指定阈值的预测。这对于消除误报很有用。

该函数返回预测结果列表,其中每个结果都包含以下信息:

  • name :预测类的名称

  • conf :预测的置信度分数

  • box :预测对象的边界框

predict_and_detect() 函数采用与 predict() 函数相同的参数,但除了预测结果外,它还返回带注释的图像。

该函数首先调用该 predict() 函数以获取预测结果。然后,它循环访问预测结果,并在每个预测对象周围绘制一个边界框。预测类的名称也写在边界框上方。

该函数返回一个包含带注释的图像和预测结果的元组。

以下是这两个函数之间差异的摘要:

  • predict() 函数仅返回预测结果,而该 predict_and_detect() 函数还返回带注释的图像。

  • predict_and_detect() 函数是 predict() 函数的包装器,这意味着它在内部调用函数 predict()

5.使用 YOLOv9 检测图像

# read the image
image = cv2.imread("YourImagePath")
result_img, _ = predict_and_detect(model, image, classes=[], conf=0.5)

如果要检测特定类,只需在类列表classes中输入对象的 ID 号即可。

6.保存并绘制结果图像

cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath", result_img)
cv2.waitKey(0)

7.使用 YOLOv9 检测视频

video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)cv2.imshow("Image", result_img)cv2.waitKey(1)

8.保存结果视频

# 定义保存函数
def create_video_writer(video_cap, output_filename):# grab the width, height, and fps of the frames in the video stream.frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(video_cap.get(cv2.CAP_PROP_FPS))#初始化fourcc = cv2.VideoWriter_fourcc(*'MP4V')writer = cv2.VideoWriter(output_filename, fourcc, fps,(frame_width, frame_height))return writer

只需使用上面的函数和代码即可:

output_filename = "YourFilename"
writer = create_video_writer(cap, output_filename)video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)writer.write(result_img)cv2.imshow("Image", result_img)cv2.waitKey(1)
writer.release()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/473741.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stm32下的ADC转换(江科协 HAL版)

十二. ADC采样 文章目录 十二. ADC采样12.1 ADC的采样原理12.2 STM32的采样基本过程1.引脚与GPIO端口的对应关系2.ADC规则组的四种转换模式(**)2.2 关于转换模式与配置之间的关系 12.3 ADC的时钟12.4 代码实现(ADC单通道 & ADC多通道)1. 单通道采样2. 多通道采样 19.ADC模数…

“fc-async”提供了基本的异步处理能力

在开发中,异步处理已经成为提升系统性能和用户体验的常用方式。然而,传统的@Async注解和基础的异步处理工具在面对复杂的任务场景时,存在局限性。这些局限性包括但不限于高并发环境下的稳定性、任务失败后的恢复机制、以及任务的监控和管理。 开源项目“fc-async”提供了基…

【linux】如何扩展磁盘容量(VMware虚拟机)-转载

如何扩展磁盘容量(VMware虚拟机) 一、前置准备工作 扩展虚拟机磁盘前,需要先把虚拟机关机才能进行扩展磁盘操作 1.选择虚拟机设置,如下图所示 2.输入你想扩展的磁盘容量,以本次实操为例,我这里输入的30G(具体按照实…

记录配置ubuntu18.04下运行ORBSLAM3的ros接口的过程及执行单目imu模式遇到的问题(详细说明防止忘记)

今天的工作需要自己录制的数据集来验证昨天的标定结果 用ORBSLAM3单目imu模式运行,mentor给的是一个rosbag格式的数据包,配置过程出了几个问题记录一下,沿配置流程写。 一.orbslam3编译安装 1.首先是安装各种依赖 这里不再赘述&#xff0…

STM32设计井下瓦斯检测联网WIFI加Zigbee多路节点协调器传输

目录 目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 1.电路图采用Altium Designer进行设计: 2.实物展示图片 三、程序源代码设计 四、获取资料内容 前言 本系统基于STM32微控制器和Zigbee无线通信技术,设计了…

华为HCIP——MSTP/RSTP与STP的兼容性

一、MSTP/RSTP与STP的兼容性的原理: 1.BPDU版本号识别:运行MSTP/RSTP协议的交换机会根据收到的BPDU(Bridge Protocol Data Unit,桥协议数据单元)版本号信息自动判断与之相连的交换机的运行模式。如果收到的是STP BPDU…

Python绘制雪花

文章目录 系列目录写在前面技术需求完整代码代码分析1. 代码初始化部分分析2. 雪花绘制核心逻辑分析3. 窗口保持部分分析4. 美学与几何特点总结 写在后面 系列目录 序号直达链接爱心系列1Python制作一个无法拒绝的表白界面2Python满屏飘字表白代码3Python无限弹窗满屏表白代码4…

第六节、Docker 方式部署指南 github 上项目 mkdocs-material

一、简介 MkDocs 可以同时编译多个 markdown 文件,形成书籍一样的文件。有多种主题供你选择,很适合项目使用。 MkDocs 是快速,简单和华丽的静态网站生成器,可以构建项目文档。文档源文件在 Markdown 编写,使用单个 YAML 配置文件配置。 MkDocs—markdown项目文档工具,…

Spring Boot教程之Spring Boot简介

Spring Boot 简介 接下来一段时间,我会持续发布并完成Spring Boot教程 Spring 被广泛用于创建可扩展的应用程序。对于 Web 应用程序,Spring 提供了 Spring MVC,它是 Spring 的一个广泛使用的模块,用于创建可扩展的 Web 应用程序。…

无线迷踪:陈欣的网络之旅

第一章 陈欣是一名资深的网络工程师,工作在一家领先的科技公司。她的生活平静而有序,直到有一天,公司的无线网络突然出现了严重的问题。员工们的设备频繁断开连接,无法正常使用。这个问题不仅影响了工作效率,还引起了…

ssm129办公用品管理系统开发与设计+jsp(论文+源码)_kaic

毕 业 设 计(论 文) 题目:办公用品管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本办公用品管理系统…

OMV7 树莓派 tf卡安装

​ 升级7之后,问题多多,不是docker不行了,就是代理不好使 今天又重装了一遍,用官方的链接,重新再折腾一遍…… 使用raspberry pi imager安装最新版lite OS。 注意是无桌面 Lite版 配置好树莓派初始化设置&#xff0…

【数据结构与算法】查找

文章目录 一.查找二.线性结构的查找2.1顺序查找2.2折半查找2.3分块查找 三.树型结构的查找3.1二叉排序树1.定义2.二叉排序树的常见操作3.性能分析 3.2平衡二叉树1.定义2.平衡二叉树的常见操作3.性能分析 3.3B树1.定义2.B树的相关操作 3.4B树1.定义2.B树与B树的比较 四.散列表1.…

SpringCloud篇(服务保护 - Sentinel)

目录 一、雪崩问题及解决方案 1. 雪崩问题 2. 解决方案 方案一:超时处理 方案二:仓壁模式 方案三:断路器模式 方案四:限流 3. 总结 二、服务保护技术对比 三、Sentinel介绍与安装 1. 初识Sentinel 2. Sentinel 优势 3…

C语言项⽬实践-贪吃蛇

目录 1.项目要点 2.窗口设置 2.1mode命令 2.2title命令 2.3system函数 2.Win32 API 2.1 COORD 2.2 GetStdHandle 2.3 CONSOLE_CURSOR_INFO 2.4 GetConsoleCursorInfo 2.5 SetConsoleCursorInfo 2.5 SetConsoleCursorPosition 2.7 GetAsyncKeyState 3.贪吃蛇游戏设…

笔记|M芯片MAC (arm64) docker上使用 export / import / commit 构建amd64镜像

很简单的起因,我的东西最终需要跑在amd64上,但是因为mac的架构师arm64,所以直接构建好的代码是没办法跨平台运行的。直接在arm64上pull下来的docker镜像也都是arm64架构。 检查镜像架构: docker inspect 8135f475e221 | grep Arc…

热点更新场景,OceanBase如何实现性能优化

案例背景 这个案例来自一个保险行业的客户:他们的核心系统底层采用了OceanBase数据库作为存储解决方案,然而,在系统上线运行后,出现了一个异常情况,执行简单的主键更新语句时SQL执行时间出现了显著的波动。为了迅速定…

MYSQL_深入理解自连接_图书借阅情况(2/2)

光说不练假把式。这就开门见山——引出我们的自连接实例:图书借阅情况。 题目: 这是一道笔试题目:如果限时5min内完成,同学们可以测试一下自己对于SQL语句的熟练程度。 题目分析: 可以看见这个数据库有三个实体&…

uniapp luch-request 使用教程+响应对象创建

1. 介绍 luch-request 是一个基于 Promise 开发的 uni-app 跨平台、项目级别的请求库。它具有更小的体积、易用的 API 和方便简单的自定义能力。luch-request 支持请求和响应拦截、全局挂载、多个全局配置实例、自定义验证器、文件上传/下载、任务操作、自定义参数以及多拦截器…

MySQL技巧之跨服务器数据查询:基础篇-A数据库与B数据库查询合并--封装到存储过程中

MySQL技巧之跨服务器数据查询:基础篇-A数据库与B数据库查询合并–封装到存储过程中 我们的最终目的是什么?当然的自动执行这些合并操作! 上一篇 MySQL技巧之跨服务器数据查询:基础篇-A数据库与B数据库查询合并 我们已经知道怎么合…