计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-04

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-04


目录

文章目录

  • 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-04
    • 目录
    • 1. Alopex: A Computational Framework for Enabling On-Device Function Calls with LLMs
        • 摘要:
        • 研究背景:
        • 算法模型:
        • 核心创新点:
        • 实验效果:
        • 后续潜在的研究方向:
        • 推荐阅读指数:★★★★☆
    • 2. LLM-PySC2: Starcraft II learning environment for Large Language Models
        • 摘要:
        • 研究背景:
        • 算法模型:
        • 核心创新点:
        • 实验效果:
        • 后续潜在的研究方向:
        • 推荐阅读指数:★★★★☆
    • 3. Enhancing Cluster Resilience: LLM-agent Based Autonomous Intelligent
        • 摘要:
        • 研究背景:
        • 算法模型:
        • 核心创新点:
        • 实验效果:
        • 后续潜在的研究方向:
        • 推荐阅读指数:★★★★☆
    • 4. From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models
        • 摘要:
        • 研究背景:
        • 算法模型:
        • 核心创新点:
        • 实验效果:
        • 后续潜在的研究方向:
        • 推荐阅读指数:★★★★☆
    • 5. Bottom-Up and Top-Down Analysis of Values, Agendas, and Observations in Corpora and LLMs
        • 摘要:
        • 研究背景:
        • 算法模型:
        • 核心创新点:
        • 实验效果:
        • 后续潜在的研究方向:
        • 推荐阅读指数:★★★★☆
    • 后记


1. Alopex: A Computational Framework for Enabling On-Device Function Calls with LLMs

Authors: Yide Ran, Zhaozhuo Xu, Yuhang Yao, Zijian Hu, Shanshan Han, Han Jin,
Alay Dilipbhai Shah, Jipeng Zhang, Dimitris Stripelis, Tong Zhang, Salman Avestimehr, Chaoyang He

https://arxiv.org/abs/2411.05209
在这里插入图片描述

Alopex:一个用于在大型语言模型上启用设备内函数调用的计算框架

摘要:

随着大型语言模型(LLMs)的快速发展,它们越来越多地被集成到移动设备中,以提供个性化辅助。这使得LLMs能够调用外部API函数来增强其性能。然而,数据稀缺、无效的问题格式化和灾难性遗忘等挑战阻碍了设备内LLM代理的发展。为了解决这些问题,我们提出了Alopex,一个框架,它使用Fox LLM启用精确的设备内函数调用。Alopex引入了一种基于逻辑的方法来生成高质量的训练数据,并采用了一种新颖的“描述-问题-输出”格式进行微调,减少了函数信息泄露的风险。此外,使用数据混合策略来减轻灾难性遗忘,将函数调用数据与教科书数据集结合,以增强在各种任务中的性能。实验结果表明,Alopex提高了函数调用的准确性,并显著减少了灾难性遗忘,为将函数调用功能集成到LLMs中提供了一种健壮的解决方案,无需人工干预。

研究背景:

大型语言模型(LLMs)在软件应用中的集成变得越来越普遍,特别是在移动设备上提供个性化辅助方面。LLMs通过调用外部API函数来增强性能,但面临数据稀缺、问题格式化和灾难性遗忘等挑战。这些挑战限制了设备内LLM代理的发展,尤其是在数据生成、问题格式化和微调策略方面。

算法模型:

Alopex框架包含三个主要组件:函数调用示例生成、LLM微调的格式化函数调用示例和克服LLM微调中灾难性遗忘的策略。该框架使用基于规则的逻辑方法生成问题和输出,通过映射表生成输出值。此外,Alopex采用了“描述-问题-输出”数据格式进行LLM微调,并引入了数据混合方法,通过将函数调用数据集与教科书数据集结合来减轻灾难性遗忘。
在这里插入图片描述

核心创新点:
  1. 基于逻辑的高质量训练数据生成方法。
  2. “描述-问题-输出”数据格式,用于LLM微调,减少了函数信息泄露的风险。
  3. 数据混合策略,结合函数调用数据和教科书数据集,以减轻灾难性遗忘。
实验效果:

实验结果表明,Alopex在函数调用准确性方面优于现有的微调LLMs,并且显著减少了灾难性遗忘现象。例如,在MMLU数据集上,经过Alopex微调的LLMs在函数调用任务上表现良好,同时在其他LLM评估基准上也表现出更好的性能。
在这里插入图片描述
在这里插入图片描述

后续潜在的研究方向:

未来的研究可以探索更高效的数据生成方法,以减少训练数据的需求。此外,可以研究更先进的微调策略,以进一步提高LLMs在函数调用任务上的性能。还可以探索如何将Alopex框架应用于其他类型的设备和应用场景。

推荐阅读指数:★★★★☆

2. LLM-PySC2: Starcraft II learning environment for Large Language Models

Authors: Zongyuan Li, Yanan Ni, Runnan Qi, Lumin Jiang, Chang Lu, Xiaojie Xu,
Xiangbei Liu, Pengfei Li, Yunzheng Guo, Zhe Ma, Xian Guo, Kuihua Huang, Xuebo Zhang
https://arxiv.org/abs/2411.05348

LLM-PYSC2: 面向大型语言模型的星际争霸II学习环境
在这里插入图片描述

摘要:

本文介绍了一个新的环境LLM-PySC2(大型语言模型星际争霸II学习环境),这是一个基于DeepMind的星际争霸II学习环境的平台,旨在开发基于大型语言模型(LLMs)的决策方法。这个环境是第一个提供完整的星际争霸II动作空间、多模态观察接口和结构化游戏知识数据库的环境,这些环境与各种LLMs无缝连接,促进了基于LLM的决策研究。为了进一步支持多智能体研究,我们开发了一个LLM协作框架,支持多智能体并发查询和多智能体通信。在我们的实验中,LLM-PySC2环境被适配为与星际争霸多智能体挑战(SMAC)任务组兼容,并提供了八个新的侧重于宏观决策能力的场景。我们在实验中评估了九个主流的LLMs,结果表明,足够的参数对于LLMs进行决策是必要的,但提高推理能力并不直接导致更好的决策结果。我们的发现进一步表明,使大型模型能够在部署环境中通过参数训练或无需训练的学习技术自主学习的重要性。最终,我们期望LLM-PySC2环境能够促进LLM学习方法的研究,帮助基于LLM的方法更好地适应任务场景。

研究背景:

星际争霸II学习环境(SC2LE)是由DeepMind和暴雪娱乐开发的,它是第一个允许各种强化学习(RL)代理在星际争霸II游戏中相互竞争的环境,并促进了如QMix、加权QMIX、MAPPO和AlphaStar等决策方法的出现。然而,RL训练的代理通常需要大量的数据和长时间的交互,但由于任务相关的奖励函数,它们在大多数场景中仍然缺乏泛化能力。因此,目前迫切需要开发新的决策方法。

算法模型:

LLM-PySC2环境是基于PySC2模块的代理级别构建的。在该环境中,MainAgent控制摄像头,选择单位,收集观察结果并执行动作,而LLM代理扮演实际的决策者角色,观察游戏情况,分析并给出动作。每个LLM代理连接到一个LLM,在独立线程中查询LLM,最终得到游戏分析和动作。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

核心创新点:
  1. 提供了完整的星际争霸II动作空间。
  2. 多模态观察接口和结构化游戏知识数据库。
  3. 支持多智能体并发查询和多智能体通信的LLM协作框架。
实验效果:

实验结果表明,预训练的LLMs具有决策能力,但缺乏做出一致有效决策的能力。预训练的LLMs在没有特定任务训练的情况下,可能无法分析出实现胜利的关键要素。它们经常无法识别游戏中知识的重要部分,有时在分析上犯错误,甚至有时对盟友造成损害。
在这里插入图片描述

后续潜在的研究方向:

未来的研究可以探索如何提高LLMs在多智能体决策领域的能力。此外,可以研究如何通过参数训练或无需训练的学习技术,使大型模型能够在部署环境中自主学习。

推荐阅读指数:★★★★☆

3. Enhancing Cluster Resilience: LLM-agent Based Autonomous Intelligent

Cluster Diagnosis System and Evaluation Framework
Authors: Honghao Shi, Longkai Cheng, Wenli Wu, Yuhang Wang, Xuan Liu, Shaokai
Nie, Weixv Wang, Xuebin Min, Chunlei Men, Yonghua Lin
https://arxiv.org/abs/2411.05349

增强集群弹性:基于LLM-agent的自主智能集群诊断系统和评估框架
在这里插入图片描述

摘要:

最近在大型语言模型(LLMs)和相关技术如增强型生成(RAG)和思维图(DoT)方面的进步,使得能够创建能够执行集群诊断和故障排除的自主智能系统。通过将这些技术与自玩方法集成,我们开发了一个LLM-agent系统,旨在自主诊断和解决AI集群内的问题。我们的创新包括为集群诊断量身定制的知识库,增强的LLM算法,实际部署策略以及专为评估LLM在该领域能力的基准测试。通过在多个维度上的广泛实验,我们已经证明了我们的系统在解决集群诊断面临的挑战方面的优越性,特别是在检测和纠正性能问题方面比传统方法更有效、更准确。

研究背景:

最近在大型语言模型(LLMs)和相关技术如增强型生成(RAG)和思维图(DoT)方面的进步,为开发能够执行集群诊断和故障排除的自主智能系统铺平了道路。通过将这些技术与自玩方法集成,我们创建了一个LLM-agent系统,旨在自主诊断和解决AI集群内的问题。

算法模型:

LLM-agent系统由代理程序和LLM组成。LLM解释代理提供的输入信息作为外部刺激和任务指令,并相应地做出响应。代理然后根据LLM的反馈直接编写代码或调用特定软件接口,从而操作集群。

核心创新点:
  1. 为集群诊断量身定制的知识库。
  2. 增强的LLM算法。
  3. 实际部署策略。
  4. 专为评估LLM在集群诊断领域的能力而设计的基准测试。
实验效果:

实验结果表明,LLM-agent在实际应用中展现出了优越的能力,能够比传统方法更有效地识别和解决性能问题。例如,在模拟场景中,当一个GPU被限制到较低频率时,我们的系统能够在几分钟内识别并解决问题,而传统方法则需要资深运维工程师近一个小时来诊断和修复。

后续潜在的研究方向:

未来的研究可以探索如何进一步提高LLM-agent在集群诊断和故障排除方面的性能。此外,可以研究如何将LLM-agent系统应用于更广泛的领域和场景。

推荐阅读指数:★★★★☆

4. From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models

Authors: Charles Zhang, Benji Peng, Xintian Sun, Qian Niu, Junyu Liu, Keyu
Chen, Ming Li, Pohsun Feng, Ziqian Bi, Ming Liu, Yichao Zhang, Cheng Fei,
Caitlyn Heqi Yin, Lawrence KQ Yan, Tianyang Wang
https://arxiv.org/abs/2411.05036

从词向量到多模态嵌入:大型语言模型的技术和应用以及未来的发展方向

摘要:

词嵌入和语言模型通过促进在连续向量空间中表示语言元素,已经改变了自然语言处理(NLP)。本综述访问了像分布假设和上下文相似性这样的基础概念,并追溯了从像one-hot编码这样的稀疏表示到包括Word2Vec、GloVe和fastText这样的密集嵌入的演变。我们检查了静态和上下文化嵌入,强调了像ELMo、BERT

和GPT这样的模型的进步,以及它们在跨语言和个性化应用中的适应。讨论扩展到句子和文档嵌入,涵盖了聚合方法和生成性主题模型,以及嵌入在多模态领域中的应用,包括视觉、机器人技术和认知科学。高级主题如模型压缩、可解释性、数值编码和偏见减轻被分析,解决了技术和伦理挑战。此外,我们确定了未来的研究方向,强调了对可扩展训练技术、增强可解释性和在非文本模态中稳固基础的需求。通过综合当前方法和新兴趋势,本调查为研究人员和实践者提供了深入的资源,以推动基于嵌入的语言模型的界限。

研究背景:

词嵌入和语言模型通过促进在连续向量空间中表示语言元素,已经改变了自然语言处理(NLP)。从早期的one-hot编码到更复杂的嵌入,如Word2Vec、GloVe和fastText,显著提高了语言模型的准确性和可扩展性,使它们能够处理大量文本数据。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法模型:

本综述探讨了词嵌入的演变,探索了基础原理、不同方法、跨模态应用和关键挑战。讨论了从稀疏表示到密集表示的转变,包括one-hot编码和词嵌入,以及上下文化词嵌入,如ELMo、BERT和GPT。

核心创新点:
  1. 分布假设和上下文相似性的基础概念。
  2. 从稀疏表示到密集表示的转变。
  3. 静态和上下文化嵌入的检查。
  4. 句子和文档嵌入的讨论。
  5. 多模态领域的应用,包括视觉、机器人技术和认知科学。
实验效果:

本文没有提供具体的实验效果,但它分析了当前的技术和趋势,并确定了未来的研究方向。

后续潜在的研究方向:

未来的研究可以探索可扩展训练技术、增强可解释性和在非文本模态中稳固基础的需求。

推荐阅读指数:★★★★☆

5. Bottom-Up and Top-Down Analysis of Values, Agendas, and Observations in Corpora and LLMs

Authors: Scott E. Friedman, Noam Benkler, Drisana Mosaphir, Jeffrey Rye, Sonja
M. Schmer-Galunder, Micah Goldwater, Matthew McLure, Ruta Wheelock, Jeremy
Gottlieb, Robert P. Goldman, Christopher Miller
https://arxiv.org/abs/2411.05040

在语料库和LLMs中自下而上和自上而下的价值观、议程和观察分析
在这里插入图片描述

摘要:

大型语言模型(LLMs)根据其提示和训练数据,从多种潜在视角生成多样化、情境化、有说服力的文本。作为LLM采用的一部分,我们寻求表征——理想情况下,管理——它们表达的社会文化价值观,原因包括安全、准确性、包容性和文化保真度。我们提出了一种经过验证的方法,自动(1)从文本中提取异质潜在价值命题,(2)评估价值与文本的共鸣和冲突,以及(3)结合这些操作来表征人类来源和LLM来源文本数据的多元价值对齐。

研究背景:

随着LLM在医疗保健、人文科学和国防科学等领域的应用,测量和管理它们输出中出现的价值观变得越来越重要。测量价值观可以帮助我们表征模型的行为是否与普遍主义(即反映单一或主导价值体系)一致,多元主义(即关注多种可能冲突的价值体系)或介于两者之间。
在这里插入图片描述
在这里插入图片描述

算法模型:

本文提出了一种自下而上分析LLMs和数据集的方法,以(1)从文本中提取多种价值观,(2)从顶部向下测量新颖和用户提供的价值观,以及(3)总结数据集或LLM输出中的价值观主导地位和多元主义。

核心创新点:
  1. 自动提取文本中的异质潜在价值命题。
  2. 评估价值与文本的共鸣和冲突。
  3. 结合自下而上和自上而下的策略来表征模型或语料库的价值对齐和多元主义。
实验效果:

实验结果表明,自上而下的值分析准确度高(F1=0.97),自下而上的值提取与人工注释者相当。

后续潜在的研究方向:

未来的研究可以探索将这种方法应用于更广泛的领域和更大规模的数据集,并帮助表征LLM训练数据中表达的价值观的多样性(或在提示中)对LLM表达的价值观的影响。

推荐阅读指数:★★★★☆

后记

如果您对我的博客内容感兴趣,欢迎三连击 (***点赞、收藏和关注 ***)和留下您的评论,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/474254.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NLP论文速读(谷歌出品)|缩放LLM推理的自动化过程验证器

论文速读|Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning 论文信息: 简介: 这篇论文探讨了如何提升大型语言模型(LLM)在多步推理任务中的性能。具体来说,它试图解决的问题是现有的基于结…

k-近邻算法(K-Nearest Neighbors, KNN)详解:机器学习中的经典算法

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

Debezium-MySqlConnectorTask

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 MySqlConnectorTask,用于读取MySQL的二进制日志并生成对应的数据变更事件 整体架构流程 技术名词解释 数据库模式(Database Schema) 数据库模式是指数据库中数据的组织结构和定义&…

SDF,一个从1978年运行至今的公共Unix Shell

关于SDF 最近发现了一个很古老的公共Unix Shell服务器,这个项目从1978年运行至今,如果对操作系统,对Unix感兴趣,可以进去玩一玩体验一下 SDF Public Access UNIX System - Free Shell Account and Shell Access 注册方式 我一…

逆向攻防世界CTF系列41-EASYHOOK

逆向攻防世界CTF系列41-EASYHOOK 看题目是一个Hook类型的,第一次接触,虽然学过相关理论,可以看我的文章 Hook入门(逆向)-CSDN博客 题解参考:https://www.cnblogs.com/c10udlnk/p/14214057.html和攻防世界逆向高手题之EASYHOOK-…

C# 面向对象

C# 面向对象编程 面向过程:一件事情分成多个步骤来完成。 把大象装进冰箱 (面向过程化设计思想)。走一步看一步。 1、打开冰箱门 2、把大象放进冰箱 3、关闭冰箱门 面向对象:以对象作为主体 把大象装进冰箱 1、抽取对象 大象 冰箱 门 &#xff0…

【AI图像生成网站Golang】项目架构

AI图像生成网站 目录 一、项目介绍 二、雪花算法 三、JWT认证与令牌桶算法 四、项目架构 五、图床上传与图像生成API搭建 六、项目测试与调试(等待更新) 四、项目架构 本项目的后端基于Golang和Gin框架开发,主要包括的模块有: backend/ ├── …

Acme PHP - Let‘s Encrypt

Lets Encrypt是一个于2015年三季度推出的数字证书认证机构,旨在以自动化流程消除手动创建和安装证书的复杂流程,并推广使万维网服务器的加密连接无所不在,为安全网站提供免费的SSL/TLS证书。 使用PHP来更新证书: Acme PHP | Rob…

前后端交互之动态列

一. 情景 在做项目时,有时候后会遇到后端使用了聚合函数,导致生成的对象的属性数量或数量不固定,因此无法建立一个与之对应的对象来向前端传递数据,这时可以采用NameDataListVO向前端传递数据。 Data Builder AllArgsConstructo…

【LeetCode 题】只出现一次的数字--其余数字都出现3次

🔶力扣上一道有意思的题,参考了评论区的解法,一起来学习 🍔思路说明: 🌟举例说明 : nums [2,2,3,2] 我们需要把其中的数字 ‘3’ 找出来 1️⃣把每个数都想成32位的二进制数(这里举…

如何在 Ubuntu 上安装 Jupyter Notebook

本篇文章将教你在 Ubuntu 服务器上安装 Jupyter Notebook,并使用 Nginx 和 SSL 证书进行安全配置。 我将带你一步步在云服务器上搭建 Jupyter Notebook 服务器。Jupyter Notebook 在数据科学和机器学习领域被广泛用于交互式编码、可视化和实验。在远程服务器上运行…

一文了解Android的核心系统服务

在 Android 系统中,核心系统服务(Core System Services)是应用和系统功能正常运行的基石。它们负责提供系统级的资源和操作支持,包含了从启动设备、管理进程到提供应用基础组件的方方面面。以下是 Android 中一些重要的核心系统服…

学者观察 | 元计算、人工智能和Web 3.0——山东大学教授成秀珍

导语 成秀珍教授提出元计算是在开放的零信任环境下整合算力资源打通数据壁垒构建自进化智能的新质生产力技术,是一种新计算范式;区块链是Web3.0的核心技术之一,有助于保障开放零信任环境下,用户、设备和服务间去中心化数据流通的…

集群聊天服务器(9)一对一聊天功能

目录 一对一聊天离线消息服务器异常处理 一对一聊天 先新添一个消息码 在业务层增加该业务 没有绑定事件处理器的话消息会派发不出去 聊天其实是服务器做一个中转 现在同时登录两个账号 收到了聊天信息 再回复一下 离线消息 声明中提供接口和方法 张三对离线的李…

MySQL —— MySQL索引介绍、索引数据结构、聚集索引和辅助索引、索引覆盖

文章目录 索引概念索引分类索引数据结构种类Innodb 索引数据结构聚集索引和辅助索引(非聚集索引)聚集索引辅助索引(非聚集索引) 索引覆盖 索引概念 索引是对数据库表中一列或多列的值进行排序后的一种数据结构。用于帮助 mysql 提…

4A架构之间的关系和集成

首先我们还是来看业务架构业务域,大家都知道在业务架构里面其实有三个核心的内容,一个是价值流,一个是业务能力,一个是业务流程。 价值流往往就是顶端的流程,业务能力的分解往往是2~4级,对于详细的业务流程…

RadSystems 自定义页面全攻略:个性化任务管理系统的实战设计

系列文章目录 探索RadSystems:低代码开发的新选择(一)🚪 探索RadSystems:低代码开发的新选择(二)🚪 探索RadSystems:低代码开发的新选择(三)&…

([LeetCode仓颉解题报告] 661. 图片平滑器

[LeetCode仓颉解题报告] 661. 图片平滑器 一、 题目1. 题目描述2. 原题链接 二、 解题报告1. 思路分析2. 复杂度分析3. 代码实现 三、 本题小结四、 参考链接 一、 题目 1. 题目描述 2. 原题链接 链接: 661. 图片平滑器 二、 解题报告 1. 思路分析 由于只需要3*39个格子&am…

若依权限控制

springbootvue2项目中的权限控制(若依项目) 步骤: 1.登录管理员账号,为普通用户增加权限按钮 绿色部分为权限控制字符 2.在后端对应的方法上增加权限控制(这里以删除操作为例):PreAuthorize(“ss.hasPermi(‘area:store:remove’)”) 3.在前端对应的按钮上增加权限控制:v-ha…

gvim添加至右键、永久修改配置、放大缩小快捷键、ctrl + c ctrl +v 直接复制粘贴、右键和还原以前版本(V)冲突

一、将 vim 添加至右键 进入安装目录找到 vim91\install.exe 管理员权限执行 Install will do for you:1 Install .bat files to use Vim at the command line:2 Overwrite C:\Windows\vim.bat3 Overwrite C:\Windows\gvim.bat4 Overwrite C:\Windows\evim.bat…