语义分割(semantic segmentation)

语义分割(semantic segmentation)

文章目录

  • 语义分割(semantic segmentation)
    • 图像分割和实例分割
      • 代码实现

语义分割指将图片中的每个像素分类到对应的类别,语义区域的标注和预测是 像素级的,语义分割标注的像素级的边界框显然更加精细。应用:背景虚化

在这里插入图片描述

图像分割和实例分割

  • 图像分割将图像划分为若干组成区域,这类问题的方法通常利用图像中像素之间的相关性。它在训练时不需要有关图像像素的标签信息,在预测时也无法保证分割出的区域具有我们希望得到的语义。以下图中的图像作为输入,图像分割可能会将狗分为两个区域:一个覆盖以黑色为主的嘴和眼睛,另一个覆盖以黄色为主的其余部分身体。

在这里插入图片描述

  • 实例分割也叫同时检测并分割(simultaneous detection and segmentation),它研究如何识别图像中各个目标实例的像素级区域。与语义分割不同,实例分割不仅需要区分语义,还要区分不同的目标实例。例如,如果图像中有两条狗,则实例分割需要区分像素属于的两条狗中的哪一条。

语义分割vs实例分割:

语义分割:只关心像素是哪一个类别

实例分割:区别具体对每个实例的识别

在这里插入图片描述

代码实现

%matplotlib inline
import os
import torch
import torchvision
from d2l import torch as d2l# 导入文件
d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar','4e443f8a2eca6b1dac8a6c57641b67dd40621a49')
voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')#加载图片
def read_voc_images(voc_dir, is_train=True):"""读取所有VOC图像并标注"""txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation','train.txt' if is_train else 'val.txt')mode = torchvision.io.image.ImageReadMode.RGBwith open(txt_fname, 'r') as f:images = f.read().split()features, labels = [], []for i, fname in enumerate(images):# 分别读取图片和像素特征点,png的文件大保存了图像质量,jpg文件小,适合存储色彩丰富、细节复杂的照片features.append(torchvision.io.read_image(os.path.join(voc_dir, 'JPEGImages', f'{fname}.jpg')))labels.append(torchvision.io.read_image(os.path.join(voc_dir, 'SegmentationClass' ,f'{fname}.png'), mode))return features, labelstrain_features, train_labels = read_voc_images(voc_dir, True)
  • 展示图片
n = 5
imgs = train_features[0:n] + train_labels[0:n]
imgs = [img.permute(1,2,0) for img in imgs]
d2l.show_images(imgs, 2, n);

在这里插入图片描述

  • 标签名与RGB色调相对应(标签中对应的图片与其标号相对应)

一个标签类别对应一个RGB颜色

#@save
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],[0, 64, 128]]#@save
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat','bottle', 'bus', 'car', 'cat', 'chair', 'cow','diningtable', 'dog', 'horse', 'motorbike', 'person','potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
  • 标签中像素的类索引和RGB的转换

利用了进制数之间的转化关系,将RGB转化为单标量索引

#@save
def voc_colormap2label():"""构建从RGB到VOC类别索引的映射"""colormap2label = torch.zeros(256 ** 3, dtype=torch.long)for i, colormap in enumerate(VOC_COLORMAP):colormap2label[(colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = ireturn colormap2label#@save
def voc_label_indices(colormap, colormap2label):"""将VOC标签中的RGB值映射到它们的类别索引"""colormap = colormap.permute(1, 2, 0).numpy().astype('int32')idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256+ colormap[:, :, 2])return colormap2label[idx]
  • 展示数据

0是背景而1是飞机的像素点,由png照片中读取得到

y = voc_label_indices(train_labels[0], voc_colormap2label())
y[105:115, 130:140], VOC_CLASSES[1]

在这里插入图片描述

  • 预处理数据

使用图像增广中的随机剪裁,剪裁输入图像和标签的相同区域;注意标签和特征要进行同步处理

#@save
def voc_rand_crop(feature, label, height, width):"""随机裁剪特征和标签图像"""# 随机处理记为rect,对特征图片和标签图片进行同样的rect处理rect = torchvision.transforms.RandomCrop.get_params(feature, (height, width))feature = torchvision.transforms.functional.crop(feature, *rect)label = torchvision.transforms.functional.crop(label, *rect)return feature, label# 图像增广处理
imgs = []
for _ in range(n):imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300)imgs = [img.permute(1, 2, 0) for img in imgs]
d2l.show_images(imgs[::2] + imgs[1::2], 2, n);

在这里插入图片描述

  • 自定义语义分割数据集类(Dataset)
class VOCSegDataset(torch.utils.data.Dataset):"""一个用于加载VOC数据集的自定义数据集"""def __init__(self, is_train, crop_size, voc_dir):self.transform = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])self.crop_size = crop_sizefeatures, labels = read_voc_images(voc_dir, is_train=is_train)self.features = [self.normalize_image(feature)for feature in self.filter(features)]self.labels = self.filter(labels)self.colormap2label = voc_colormap2label()print('read ' + str(len(self.features)) + ' examples')# 图片归一化def normalize_image(self, img):return self.transform(img.float() / 255)# 去掉图片尺寸较小的图片def filter(self, imgs):return [img for img in imgs if (img.shape[1] >= self.crop_size[0] andimg.shape[2] >= self.crop_size[1])]def __getitem__(self, idx):feature, label = voc_rand_crop(self.features[idx], self.labels[idx], *self.crop_size)return (feature, voc_label_indices(label, self.colormap2label))def __len__(self):return len(self.features)# 读取数据集
crop_size = (320, 480)
voc_train = VOCSegDataset(True, crop_size, voc_dir)
voc_test = VOCSegDataset(False, crop_size, voc_dir)batch_size = 64
train_iter = torch.utils.data.DataLoader(voc_train, batch_size, shuffle=True,drop_last=True,num_workers=d2l.get_dataloader_workers())
for X, Y in train_iter:print(X.shape)print(Y.shape)break
-------------------------------------
torch.Size([64, 3, 320, 480])
torch.Size([64, 320, 480])# 整合所有组件
def load_data_voc(batch_size, crop_size):"""加载VOC语义分割数据集"""voc_dir = d2l.download_extract('voc2012', os.path.join('VOCdevkit', 'VOC2012'))num_workers = d2l.get_dataloader_workers()train_iter = torch.utils.data.DataLoader(VOCSegDataset(True, crop_size, voc_dir), batch_size,shuffle=True, drop_last=True, num_workers=num_workers)test_iter = torch.utils.data.DataLoader(VOCSegDataset(False, crop_size, voc_dir), batch_size,drop_last=True, num_workers=num_workers)return train_iter, test_iter

语义分割通过将图像划分为属于不同语义类别的区域,来识别并理解图像中像素级别的内容

由于语义分割的输入图像和标签在像素上一一对应,输入图像会被裁剪为固定尺寸而不是缩放。

Q&A:

Q1:更细致的语义分割

A1:可以利用关键点分割,在计算机视觉中,关键点分割是指利用图像中的关键点信息对图像进行区域划分、分割或标定,这可以应用于从物体识别到姿态估计的多个领域。

Q2:三维语义分割该如何去做,与二维图像之间的差别有哪些

A2:把三维图片压成一个二维图片;把二维卷积化成3D卷积;3D医学影像,z轴切片,一片一片的分割,然后叠到一起。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/474804.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ —— string类(上)

目录 string的介绍 string类功能的使用介绍 constructor —— 构造 介绍使用(1)(2)(4) :构造、拷贝构造、带参构造 介绍(3):拷贝string类对象的一部分字符…

Python小白学习教程从入门到入坑------第三十二课 生成器(语法进阶)

目录 一、生成器 generator 1.1 生成器表达式 1.1.1 表达式一 1.1.2 表达式二 二、可迭代对象、迭代器、生成器三者之间的关系 2.1 定义与特性 2.2 关系与区别 一、生成器 generator 在Python中,生成器(Generators)是一种用于迭代对象…

商业iOS端路由架构演进

背景 目前商业SDK中的点击事件,会根据不同的「事件类型」「业务类型」,去执行不同的路由跳转逻辑,然而不同的跳转事件内部又有着很复杂的跳转逻辑, 痛点 不同的跳转逻辑之间存在耦合 例如,在deeplink的跳转逻辑之中…

数据结构(单向链表——c语言实现)

链式存储的优缺点: 优点: 1、动态分配内存: 链式存储不需要在数据插入之前分配固定大小的数组或内存块,因此它更适合存储动态变化的数据 2、高效的插入和删除操作: 在链表中插入或删除元素只需要调整相邻节点的指…

【SQL】E-R模型(实体-联系模型)

目录 一、介绍 1、实体集 定义和性质 属性 E-R图表示 2. 联系集 定义和性质 属性 E-R图表示 一、介绍 实体-联系数据模型(E-R数据模型)被开发来方便数据库的设计,它是通过允许定义代表数据库全局逻辑结构的企业模式&#xf…

Pytest-Bdd-Playwright 系列教程(12):步骤参数 parsers参数解析

Pytest-Bdd-Playwright 系列教程(12):步骤参数 & parsers参数解析 前言一、什么是步骤参数?二、pytest-bdd 的步骤参数用法2.1 简单字符串解析2.2 自定义正则表达式解析2.3 参数类型转换 三、案例:基于 pytest-bdd…

vscode 快捷键生成代码

1. !Tab/回车键 便捷生成html初始结构代码(注意!是英文字符) 2. Alt B 快捷默认浏览器打开 3. Ctrl / 增加注释 4. 光标放到该行即可,直接ctrlC,ctrlv,即可在下面复制一行 5. 选中要修改的标签…

前端接入Paymax支付请求

材料指南 开发者平台 :配置开发必备信息(appid,商户号,公钥私钥),此处与请求参数appId、merchantNo有关。 PayerMax Apis:各支付接口信息,本文以收银台支付API为请求展开,请求url为orderAndPay,测试环境基…

Jmeter的后置处理器(二)

5--JSR223 PostProcessor 功能特点 自定义后处理逻辑:使用脚本语言编写自定义的后处理逻辑。支持多种脚本语言:支持 Groovy、JavaScript、BeanShell 等脚本语言。动态参数传递:将提取的数据存储为变量,供后续请求使用。灵活性高…

CSS遮罩:mask

CSS属性 mask 允许使用者通过遮罩或者裁切特定区域的图片的方式来隐藏一个元素的部分或者全部可见区域。 // 一般用位图图片做遮罩 mask: url(~/assets/images/mask.png); mask-size: 100% 100%;// 使用 SVG 图形中的形状来做遮罩 mask: url(~/assets/images/mask.svg#star);…

Zmap+python脚本+burp实现自动化Fuzzing测试

声明 学习视频来自 B 站UP主泷羽sec,如涉及侵权马上删除文章。 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负。 ✍🏻作者简介:致…

15. Python中的os.path模块/路径操作相关

这个专栏记录我学习/科研过程中遇到的一些小问题以及解决方案,一些问题可能比较蠢请见谅。自用,仅供参考。 ------------------------------------------------------------------------------------ Python中的os.path模块详解(包括一些常…

鸿蒙实战:页面跳转传参

文章目录 1. 实战概述2. 实现步骤2.1 创建鸿蒙项目2.2 编写首页代码2.3 新建第二个页面 3. 测试效果4. 实战总结 1. 实战概述 本次实战,学习如何在HarmonyOS应用中实现页面间参数传递。首先创建项目,编写首页代码,实现按钮跳转至第二个页面并…

NLP论文速读(EMNLP 2024)|动态奖励与提示优化来帮助语言模型的进行自我对齐

论文速读|Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models 论文信息: 简介: 本文讨论的背景是大型语言模型(LLMs)的自我对齐问题。传统的LLMs对齐方法依赖于昂贵的训练和人类偏好注释&am…

Label-studio-ml-backend 和YOLOV8 YOLO11自动化标注,目标检测,实例分割,图像分类,关键点估计,视频跟踪

这里写目录标题 1.目标检测 Detection2.实例分割 segment3.图像分类 classify4.关键点估计 Keypoint detection5.视频帧检测 video detect6.视频帧分类 video classify7.旋转目标检测 obb detect8.替换yolo11模型 给我点个赞吧,谢谢了附录coco80类名称 笔记本 华为m…

图像处理学习笔记-20241118

文章目录 霍夫变换基本原理霍夫变换的步骤使用 OpenCV 实现直线检测示例:标准霍夫变换 示例:概率霍夫变换参数解释霍夫变换检测圆 基于GAN的样本生成GAN的基本原理基于GAN的数据增广流程实现代码示例 同态滤波(Homomorphic Filtering&#xf…

视频融合×室内定位×数字孪生

随着物联网技术的迅猛发展,室内定位与视频融合技术在各行各业中得到了广泛应用。不仅能够提供精确的位置信息,还能通过实时视频监控实现全方位数据的可视化。 与此同时,数字孪生等技术的兴起为智慧城市、智慧工厂等应用提供了强大支持&#…

当科技照进现实 机器人带着机器狗乘空轨

湖北日报讯(记者魏铼、通讯员张璨龙)11月14日,武汉东湖高新区空轨高新大道站,在光谷装上“智慧大脑”的人形机器人,乘空轨,看AI展,与小朋友在生态大走廊斗舞。 京天博特:光谷“智慧大…

freertos任务调度学习

首先创建任务,创建好任务后,开启任务调度器,任务才能执行 1.开启任务调度器 2.启动第一个任务 3.任务切换

蓝桥杯每日真题 - 第16天

题目:(卡牌) 题目描述(13届 C&C B组C题) 解题思路: 题目分析: 有 n 种卡牌,每种卡牌的现有数量为 a[i],所需的最大数量为 b[i],还有 m 张空白卡牌。 每…