OpenCV与AI深度学习|16个含源码和数据集的计算机视觉实战项目(建议收藏!)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:分享|16个含源码和数据集的计算机视觉实战项目

本文将分享16个含源码和数据集的计算机视觉实战项目。具体包括:

    1. 人数统计工具

    2. 颜色检测

    3. 视频中的对象跟踪

    4. 行人检测

    5. 手势识别

    6. 人类情感识别

    7. 车道线检测

    8. 名片扫描仪

    9. 车牌识别

    10. 手写数字识别

    11.鸢尾花分类

    12. 家庭照片人脸检测

    13. 乐高积木查找器

    14. 个人防护装备检测

    15. 口罩检测

    16. 交通灯检测

1. 人数统计工具

    构建人数统计解决方案既可以是一个有趣的项目,又可以真正找到现实世界的应用程序。

    要检测和计算图像中存在的人数,您需要相关的训练数据集和数据训练平台。您可以使用 OpenCV 等免费工具来标记数据,或使用 V7 等自动注释工具来更快地完成此项目。

    自 COVID-19 爆发以来,人数统计解决方案越来越受欢迎,有助于执行社交距离规则并提高安全性。

    下面是一个推荐的数据集和代码,可以帮助您入门:

https://github.com/gjy3035/PCC-Net

2. 颜色检测

    接下来是一个简单的颜色检测器,可用于各种视觉任务。

    从检测颜色到构建绿屏应用程序(用自定义视频或背景替换绿色背景)到简单的照片编辑软件,构建颜色识别器是计算机视觉入门的一个很棒的项目。

    以下是您可能想要在项目中使用的一些有趣的数据集和代码:

https://github.com/mpatacchiola/deepgaze

3. 视频中的对象跟踪

    对象跟踪是根据先前的信息估计场景中存在的目标对象的状态。

    您可以使用涉及一个对象(例如汽车)或多个对象(例如行人、动物等)的视频来构建简单的对象跟踪模型。

    本质上,该模型将执行两项任务 - 预测对象的下一个状态并根据对象的真实状况纠正该状态。对象跟踪模型在交通控制和人机交互中得到应用。

    以下是您可能会对此计算机视觉任务感兴趣的一些视频数据集和代码:

https://github.com/JunweiLiang/Object_Detection_Tracking

4. 行人检测

    构建对象检测模型来检测行人是最简单、最快完成的计算机视觉项目之一。

    您所需要的只是高质量图像的相关数据集和用于训练和测试模型的数据训练平台。您可以使用免费的图像注释工具之一。

    行人探测器通常用于汽车行业的交通安全以及人机交互和智能视频系统。

    考虑这些数据集和代码来开始:

https://github.com/kuanhungchen/awesome-tiny-object-detection

5. 手势识别

    手势识别是一项更高级的计算机视觉任务,要求您首先将手部区域与背景分开,然后分割手指以预测手势。

    如果您想保持模型简单,可以使用 OpenCV。训练后,您可以使用网络摄像头测试您的模型。手势模型可用于 VR 游戏和手语。

    查看这些数据集和代码以开始:

https://github.com/ahmetgunduz/Real-time-GesRec

6. 人类情感识别

如果您决定执行更具挑战性的任务,请考虑构建情绪检测模型。您可以将模型基于六种主要的面部情绪:快乐、悲伤、愤怒、恐惧、厌恶和惊讶。

    该项目的三个主要组成部分包括图像预处理、特征提取和特征分类。

    以下是可能派上用场的数据集和代码:

https://github.com/atulapra/Emotion-detection

7. 车道线检测

道路车道检测是另一种在汽车行业发展中发挥关键作用的计算机视觉模型。

    道路车道检测器主要用于自动驾驶汽车,可以是一个有趣的初学者项目,它将帮助您获得图像和视频的实践经验。

    以下是一些可以帮助您的数据集和代码:

https://github.com/oneshell/road-lane-detection

8. 名片扫描仪

    开发名片扫描仪可以使用 OCR(光学字符识别)技术来完成。您训练有素的模型将从名片中查找并提取信息。

    本质上,该项目将分为三个阶段:图像处理(噪声消除)、OCR(文本提取)和分类(对关键属性进行分类)。

    您可以使用名片阅读器自动输入数据。选择其中一个数据集开始:

https://github.com/dhruv2601/Business-Card-Scanner

9. 车牌识别

    车牌识别器是使用 OCR 的计算机视觉项目的另一个想法。

    然而,该项目存在两个挑战:数据收集以及车牌格式因地点/国家而异。

    因此,除非您训练大量数据(如果您设法获得数据),否则您的模型可能不准确。

    注意:车牌号被视为敏感数据,因此在构建模型时请确保坚持使用公开可用的数据集。

    一个简单的自动车牌识别系统可以使用基本的图像处理技术,您可以使用 OpenCV 和 Python 来构建它。

    然而,更先进的系统使用 YOLO 或 Fast C-RNN 等目标检测器。

    自动车牌识别可用于安防、停车、智慧城市、自动收费、门禁等。

    以下是您可能会考虑的一些数据集和代码:

https://github.com/sergiomsilva/alpr-unconstrained

10. 手写数字识别

    该项目对于计算机视觉新手来说是一个完美的开始——您可以使用 MNIST 数据集构建一个简单的数字识别器。

    当您有机会使用卷积神经网络训练模型时,您将学习如何开发、评估和使用卷积深度学习神经网络进行图像分类。

    MNIST 数据集包含 60,000 个示例的训练集和 10,000 个示例的测试集。您可以在这里访问它:

https://github.com/MyScript/myscript-math-web

11.鸢尾花分类

    这是另一个计算机视觉项目,基于最流行且最容易获得的模式识别数据集之一——鸢尾花分类数据集。

    它包含三个类,每个类 50 个实例,其中每个类都指一种鸢尾植物。这是一个很棒的初学者项目,将帮助您获得图像分类的实践经验,因为您将训练模型来预测新鸢尾花的种类。

    您可以在此处下载数据集和代码:

https://github.com/amberkakkar01/IRIS-Flower-classification

12. 家庭照片人脸检测

    拿起您的家庭相册收集原始数据并构建人脸识别模型以识别照片中的家庭成员。

    您可以使用免费的注释工具标记数据,并在不到一个小时的时间内训练您的模型。该任务是一个多阶段过程,包括人脸检测、对齐、特征提取和特征识别。

    为了使您的项目更有趣、模型更准确,也可以考虑使用视频数据。如果您无法自行获取数据,请查看这些数据集以开始面部识别项目:

https://github.com/jfthuong/photo-organizer

13. 乐高积木查找器

    如果您在童年时期曾花费数小时搭建乐高积木,那么这个项目可能是让您迷上计算机视觉的完美方式。

    最简单的形式是,您可以构建一个模型,使用网络摄像头或手机摄像头实时检测和识别乐高积木。您所需要的只是大量的训练数据和训练模型的工具。

以下是适合您的数据集和代码:

https://github.com/ShawnHymel/openmv-lego-brick-finder

14. 个人防护装备检测

    该计算机视觉项目的目标是建立一个模型来识别个人防护装备或口罩的元素。您可以在几个小时内完成它,并使用网络摄像头并在计算机前戴上面罩进行测试。

    个人防护装备检测模型可应用于建筑或医疗保健(医院)等行业。

    查看这些数据集和代码以开始使用:

https://github.com/AnshulSood11/PPE-Detection-YOLO-Deep_SORT

15. 口罩检测

    与 PPE 检测类似,您可以构建一个简单的口罩检测模型来识别在公共场合戴口罩和不戴口罩的人。

    请记住收集大量数据,以确保模型处理各种遮挡的准确性。

查看此数据集和代码以开始:

https://github.com/naemazam/Real-Time-Face-Mask-Detection

16. 交通灯检测

    最后,考虑花一些时间训练交通灯探测器。该项目相对容易完成,因为您可以免费访问数据和研究的可用性。

    交通灯检测在智能交通领域得到应用,包括自动驾驶汽车和智能城市等流行用例。

以下是您可以使用的一些数据集和代码:

https://github.com/erdos-project/pylot

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/476162.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化

Kafka:分布式消息系统的核心原理与安装部署-CSDN博客 自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例-CSDN博客 Kafka 生产者全面解析:从基础原理到高级实践-CSDN博客 Kafka 生产者优化与数据处理经验-CSDN博客 Kafka 工作流程解析&#xff1a…

HarmonyOs鸿蒙开发实战(17)=>沉浸式效果第二种方案一组件安全区方案

1.沉浸式效果的目的 开发应用沉浸式效果主要指通过调整状态栏、应用界面和导航条的显示效果来减少状态栏导航条等系统界面的突兀感,从而使用户获得最佳的UI体验。 2.组件安全区方案介绍 应用在默认情况下窗口背景绘制范围是全屏,但UI元素被限制在安全区内…

五天SpringCloud计划——DAY1之mybatis-plus的使用

一、引言 咱也不知道为啥SpringCloud课程会先教mybatis-plus的使用,但是教都教了,就学了吧,学完之后觉得mybatis-plus中的一些方法还是很好用了,本文作为我学习mybatis-plus的总结提升,希望大家看完之后也可以熟悉myba…

Matlab 答题卡方案

在现代教育事业的飞速发展中,考试已经成为现代教育事业中最公平的方式方法,而且也是衡量教与学的唯一方法。通过考试成绩的好与坏,老师和家长可以分析出学生掌握的知识多少和学习情况。从而老师可以了解到自己教学中的不足来改进教学的方式方…

丹摩|丹摩助力selenium实现大麦网抢票

丹摩|丹摩助力selenium实现大麦网抢票 声明:非广告,为用户体验 1.引言 在人工智能飞速发展的今天,丹摩智算平台(DAMODEL)以其卓越的AI算力服务脱颖而出,为开发者提供了一个简化AI开发流程的强…

【生成数据集EXCEL文件】使用生成对抗网络GAN生成数据集:输出生成数据集EXCEL

本文采用MATLAB编程,使用生成对抗网络GAN生成数据集:输出生成数据集EXCEL格式文件,方便大家使用。 实际工程应用中,由于经济成本和人力成本的限制,获取大量典型的有标签的数据变得极具挑战,造成了训练样本…

cocos creator 3.8 一些简单的操作技巧,材质的创建 1

这是一个飞机的3D模型与贴图 导入到cocos中,法线模型文件中已经包含了mesh、material、prefab,也就是模型、材质与预制。界面上创建一个空节点Plane,将模型直接拖入到Plane下。新建材质如图下 Effect属性选择builtin-unlit,不需…

手机领夹麦克风哪个牌子好,哪种领夹麦性价比高,热门麦克风推荐

​在如今这个科技飞速发展的时代,麦克风的选择成了很多人关心的问题,特别是无线麦克风该怎么选呢?向我咨询麦克风选购事宜的人可不在少数。要是你只是想简单自娱自乐一下,其实真没必要大费周章,直接用手机自带的麦克风…

【功能实现】bilibili顶部鼠标跟随效果怎么实现?

我们在电脑端打开b站首页时,总会被顶部【鼠标跟随】的效果所吸引,那他是如何实现的,来研究一下。 b站效果: 分析: 1.监听鼠标的位置,当悬浮到该模块时,图片会随鼠标移动 2.引入图片的样式是动…

WebStorm 安装配置(详细教程)

文章目录 一、简介二、优势三、下载四、安装4.1 开始安装4.2 选择安装路径4.3 安装选项4.4 选择开始菜单文件夹4.5 安装完成 五、常用插件5.1 括号插件(Rainbow Brackets)5.2 翻译插件(Translation)5.3 代码缩略图(Cod…

[C++]:C++11(三)

1. 可变参数模版 1.1 概念 可变参数模板允许我们定义能接受可变数目模板参数的模板。简单来说,就好比一个函数可以接受任意个数的实际参数一样,可变参数模板能应对不同数量的模板参数情况。比如,我们可以有一个模板类或者模板函数&#xff…

【Nginx从入门到精通】05-安装部署-虚拟机不能上网简单排错

文章目录 总结1、排查步骤 一、排查:Vmware网关二、排查:ipStage 1 :ping 127.0.0.1Stage 2 :ping 宿主机ipStage 3 :ping 网关 失败原因解决方案Stage 4 :ping qq.com 总结 1、排查步骤 Vmware中网关是否…

InstantStyle容器构建指南

一、介绍 InstantStyle 是一个由小红书的 InstantX 团队开发并推出的图像风格迁移框架,它专注于解决图像生成中的风格化问题,旨在生成与参考图像风格一致的图像。以下是关于 InstantStyle 的详细介绍: 1.技术特点 风格与内容的有效分离 &a…

卷积神经网络各层介绍

目录 1 卷积层 2 BN层 3 激活层 3.1 ReLU(Rectified Linear Unit) 3.2 sigmoid 3.3 tanh(双曲正切) 3.4 Softmax 4 池化层 5 全连接层 6 模型例子 1 卷积层 卷积是使用一个卷积核(滤波器)对矩阵进…

Elastic 和 Red Hat:加速公共部门 AI 和机器学习计划

作者:来自 Elastic Michael Smith 随着公共部门组织适应数据的指数级增长,迫切需要强大、适应性强的解决方案来管理和处理大型复杂数据集。人工智能 (Artificial intelligence - AI) 和机器学习 (machine learning - ML) 已成为政府机构将数据转化为可操…

SAP B1 登陆报错解决方案 - 系统架构目录服务器选择

背景 登录时出现如下报错,报错显示为【系统架构目录服务器选择】 强行登录会发现过往账套都不见了 出现原因 出于各种原因在开机时没有把 SAP 所有的服务成功启动(上一次启动科学上网后全局代理没关干净之类的)。 解决方案 关机几分钟重启…

基于深度卷积神经网络(CNN)模型的图像着色研究与应用系统实现

1.摘要 许多历史照片都是黑白的,通过颜色化可以恢复这些照片的历史感和真实感,使人们更好地理解和感受历史事件。随着深度学习技术的发展,特别是卷积神经网络和自监督学习的兴起,研究人员提出了新的方法来解决这些问题。通过将颜色…

【CVE-2024-9413】SCP-Firmware漏洞:安全通告

安全之安全(security)博客目录导读 目录 一、概述 二、修订历史 三、CVE根因分析 四、问题修复解决 一、概述 在SCP固件中发现了一个漏洞,如果利用该漏洞,可能会允许应用处理器(AP)在系统控制处理器(SCP&#xf…

Oracle 19C 安装RAC磁盘投票失败

ORACLE 19C 安装RAC第二个节点报错,没有找到足够的 voting 文件(投票磁盘) 1、磁盘投票失败分析 1.1、02节点报错日志 CRS-4123: Starting Oracle High Availability Services-managed resources CRS-2672: Attempting to start ora.mdnsd…

【Maven】IDEA创建Maven项目 Maven配置

文章目录 简介配置环境变量配置仓库测试安装 IDEA创建项目pom.xml 简介 Maven 是一个非常流行的项目管理和构建自动化工具,主要应用于 Java 项目的构建、依赖管理和项目信息管理。它是由 Apache 软件基金会维护的开源项目。Maven 的设计理念是通过一个项目对象模型…