XLNet——打破 BERT 局限的预训练语言模型

近年来,深度学习在自然语言处理(NLP)领域取得了革命性进展,其中 BERT 的出现标志着双向语言建模的强大能力。然而,BERT 也存在一些局限性,限制了其在生成任务中的表现。2019 年,由 Google 和 Carnegie Mellon University 联合提出的 XLNet 模型,通过引入 排列语言建模(Permuted Language Modeling, PLM)Transformer-XL 结构,打破了 BERT 的瓶颈,并在多个 NLP 任务中实现了超越。

本文将从 XLNet 的核心概念、设计原理、优势与局限 等方面,详细介绍这款强大的预训练语言模型。


1. XLNet 是什么?

XLNet 是一种基于 Transformer 的预训练语言模型,旨在结合自回归模型(如 GPT)和自编码模型(如 BERT)的优势,解决 BERT 的以下局限性:

  1. 预训练和微调不一致:BERT 的 Masked Language Model(MLM)依赖于遮掩的 [MASK] token,但在微调时 [MASK] 不存在,导致不一致。
  2. 上下文利用有限:BERT 只能预测被遮掩 token,而未显式建模所有 token 的联合分布。

为此,XLNet 提出了 排列语言建模,并结合了 Transformer-XL 的记忆机制,实现了对更长上下文的建模和对联合概率分布的显式优化。


2. 核心创新:排列语言建模(Permuted Language Modeling, PLM)

传统的语言模型训练目标通常是固定的:

  • 自回归模型(如 GPT):从左到右依次预测下一个 token。
  • 自编码模型(如 BERT):遮掩部分 token,然后预测这些 token。
(1) 排列语言建模的核心思想

XLNet 使用随机排列的方式改变 token 的预测顺序,例如:

  • 对于序列 x = [x1, x2, x3, x4, x5],生成随机排列 [x3, x1, x2, x5, x4]
  • 按照排列的顺序,模型依次预测 token(如预测 x3 时仅考虑排列中 x1, x2)。

通过排列语言建模,XLNet 显式优化了 token 的联合概率分布:
P ( x ) = ∏ t = 1 T P ( x z t ∣ x z 1 , . . . , x z t − 1 ) P(x) = \prod_{t=1}^T P(x_{z_t} | x_{z_1}, ..., x_{z_{t-1}}) P(x)=t=1TP(xztxz1,...,xzt1)
其中, z z z 表示随机排列的顺序。

(2) 动态预测目标

在训练过程中,模型会动态生成排列顺序,确保在每次训练中都能学习不同的上下文依赖关系。这种机制避免了数据重复,同时提升了数据多样性。


3. 结合 Transformer-XL 的长距离建模能力

XLNet 基于 Transformer-XL 架构,进一步增强了对长文本的建模能力:

  • 记忆机制:通过缓存上一段文本的隐状态,实现跨段上下文的信息共享。
  • 有效的长距离依赖建模:相比于传统 Transformer,Transformer-XL 避免了序列长度限制带来的上下文截断问题。

这种设计使得 XLNet 能够在长文本场景中表现得更加出色,例如阅读理解和文档分类。


4. XLNet 的优势

(1) 超越 BERT 的理解能力
  • XLNet 通过排列语言建模捕捉了 token 的联合分布,显式建模上下文关系,比 BERT 的 MLM 更全面。
  • 在多个 NLP 任务(如 GLUE、SQuAD)中,XLNet 的表现优于 BERT。
(2) 克服预训练和微调的不一致性
  • BERT 在预训练中使用 [MASK],但下游任务通常不包含遮掩 token,这种不一致性会影响性能。
  • XLNet 无需遮掩 token,因此预训练和微调阶段的输入更一致。
(3) 适用于长文本任务
  • Transformer-XL 的记忆机制让 XLNet 能够处理比 BERT 更长的上下文序列,在需要全局理解的任务中表现更佳。

5. XLNet 的局限性

(1) 计算成本高
  • 排列语言建模需要多次动态生成排列,并显式计算联合概率分布,相比 BERT 和 GPT,计算复杂度更高。
(2) 不完全适合生成任务
  • 虽然 XLNet 引入了自回归特性,但其双向建模方式仍主要面向理解任务。在逐步生成文本时,GPT 的左到右自回归建模更高效。
(3) 复杂性较高
  • XLNet 的实现和训练逻辑比 BERT 和 GPT 更复杂,对硬件和开发的要求更高。

6. XLNet 的应用场景

(1) 自然语言理解任务
  • 文本分类:如情感分析、话题分类。
  • 自然语言推断(NLI):判断句子间的逻辑关系。
  • 阅读理解(QA):从上下文中抽取答案。
(2) 序列标注任务
  • 命名实体识别(NER)。
  • 词性标注(POS tagging)。
(3) 长文本任务
  • 文档级分类:如法律、金融文档分析。
  • 文本摘要生成(结合下游微调)。

7. XLNet 与 GPT、BERT 的对比

模型目标上下文建模适用任务生成能力
BERTMLM双向(静态遮掩)理解任务(分类、QA)较弱(遮掩限制)
GPT自回归语言模型单向(左到右)生成任务(文本生成)
XLNet排列语言建模双向 + 自回归(动态)理解任务(分类、QA)有限(生成性能弱于 GPT)

参考代码:使用 Hugging Face 加载 XLNet

from transformers import XLNetTokenizer, XLNetForSequenceClassification
import torch# 加载 XLNet 模型和分词器
tokenizer = XLNetTokenizer.from_pretrained("xlnet-base-cased")
model = XLNetForSequenceClassification.from_pretrained("xlnet-base-cased", num_labels=2)# 输入文本
text = "XLNet is a powerful model for NLP tasks."
inputs = tokenizer(text, return_tensors="pt")# 推理
outputs = model(**inputs)
logits = outputs.logits
print("Logits:", logits)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/476291.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue中mixin(混入)的使用

目录 mixin(混入) 使用方式 第一步定义混合 ​编辑 第二步使用混入 局部混入 全局混合 mixin(混入) 功能:可以把多个组件共用的配置提取成一个混入对象 使用方式 第一步定义混合 { data(){....}, methods:{....} .... } 第二步使用混入 …

vue中路由缓存

vue中路由缓存 问题描述及截图解决思路关键代码及打印信息截图 问题描述及截图 在使用某一平台时发现当列表页码切换后点击某一卡片进入详情页后,再返回列表页时页面刷新了。这样用户每次看完详情回到列表页都得再重新输入自己的查询条件,或者切换分页到…

Easyexcel(1-注解使用)

相关文章链接&#xff1a; Easyexcel&#xff08;1-注解使用&#xff09; 版本依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.3.3</version> </dependency>ExcelProperty…

Vue3 -- mock数据完整配置并调试【项目集成6】

引言&#xff1a; ‌Mock在前端开发中的作用主要是模拟后端接口数据&#xff0c;以便前端开发者能够提前进行页面和功能的开发、调试&#xff0c;而无需等待后端提供真实的接口数据‌。Mock数据可以加速前后端开发的协同&#xff0c;避免因数据延迟导致的开发阻塞‌。【摘自百…

开源许可协议

何同学推动了开源协议的认识&#xff0c;功不可没&#xff0c;第一次对开源有了清晰的认识&#xff0c;最宽松的MIT开源协议 源自OSC开源社区&#xff1a;何同学使用开源软件“翻车”&#xff0c;都别吵了&#xff01;扯什么违反MIT

数据结构(顺序栈——c语言实现)

栈的基本概念&#xff1a; 栈是限制在一端进行插入操作和删除操作的线性表&#xff08;俗称堆栈&#xff09;&#xff0c;允许进行操作的一端称为“栈顶”&#xff0c;另一固定端称为“栈底”&#xff0c;当栈中没有元素时称为“空栈” 特点&#xff1a;先进后出&#xff08;FI…

【智谱清言-注册_登录安全分析报告】

前言 由于网站注册入口容易被机器执行自动化程序攻击&#xff0c;存在如下风险&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露&#xff0c;不符合国家等级保护的要求。短信盗刷带来的拒绝服务风险 &#xff0c;造成用户无法登陆、注册&#xff0c;大量收到垃圾短信的…

[Realtek sdk-3.4.14b] RTL8197FH-VG新增jffs2分区操作说明

sdk说明 ** Gateway/AP firmware v3.4.14b – Aug 26, 2019**  Wireless LAN driver changes as:  Refine WiFi Stability and Performance  Add 8812F MU-MIMO  Add 97G/8812F multiple mac-clone  Add 97G 2T3R antenna diversity  Fix 97G/8812F/8814B MP issu…

Cesium 加载B3DM模型

一、引入Cesium&#xff0c;可以使用该链接下载cesium 链接: https://pan.baidu.com/s/1BRQyaFCkxO2xQQT5RzFUCw?pwdkcv9 提取码: kcv9 在index.html文件中引入cesium <script type"text/javascript" src"/Cesium/Cesium.js"></script> …

掌握移动端性能测试利器:深入JMeter手机录制功能

引言 在当今移动互联网时代&#xff0c;应用程序的性能和用户体验至关重要。为了确保应用程序在不同设备和网络环境下都能稳定运行&#xff0c;性能测试成为了不可或缺的一环。Apache JMeter作为一款强大的开源性能测试工具&#xff0c;不仅支持传统的PC端性能测试&#xff0c…

友思特新闻 | 友思特荣获广州科技创新创业大赛智能装备行业赛初创组优胜企业!

2024年11月19日&#xff0c;第十三届中国创新创业大赛&#xff08;广东广州赛区&#xff09;暨2024年广州科技创新创业大赛智能装备行业赛颁奖典礼隆重举行。 赛事奖项介绍&#xff1a;广州科技创新创业大赛智能装备行业赛 第十三届“中国创新创业大赛&#xff08;广东广州赛区…

Docker3:docker基础1

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…

MySQL - 数据库基础 | 数据库操作 | 表操作

文章目录 1、数据库基础1.1为什么要有数据库1.2主流的数据库1.3连接MySQL1.4服务器、数据库、表的关系1.5 MySQL框架1.6 SQL分类1.7储存引擎 2.数据库操作2.1创建数据库2.2字符集和校验规则2.3删除数据库2.4修改数据库2.5备份与恢复2.6查看连接情况 3.表的操作3.1创建表3.2查看…

通过vite+vue3+pinia从0到1搭建一个uniapp应用

最近项目上要做一个app&#xff0c;选择了用uniapp作为开发框架&#xff1b;我大概看了一下uniapp的文档&#xff0c;根据文档从0到1搭了一个uniapp应用供大家参考。 因为本人习惯使用了WebStorm编译器&#xff0c;但是uniapp官方推荐使用HBuilder搭建&#xff0c;如果和我一样…

学习路之phpstudy--安装mysql5.7后在my.ini文件中无法修改sql_mode

windows环境下使用phpstudy安装mysql5.7后需要修改mysql中的sql_mode配置&#xff0c;但是在phpstudy中打开mysql配置文件my.ini后&#xff0c; 通过查找找不到sql_mode或sql-mode&#xff0c; 此时无法在my.ini文件中直接进行修改&#xff0c;可以使用mysql命令进行修改&#…

IDEA:2023版远程服务器debug

很简单&#xff0c;但是很多文档没有写清楚&#xff0c;wocao 一、首先新建一个远程jvm 二、配置 三、把上面的参数复制出来 -agentlib:jdwptransportdt_socket,servery,suspendn,address5005 四、然后把这串代码放到服务器中&#xff08;这里的0.0.0.0意思是所有IP都能访问&a…

ts: 定义一个对象接收后端返回对象数据,但是报错了有红色的红线为什么

问&#xff1a; const backendProgressData ref<object>&#xff08;{}&#xff09; 这是我的代码&#xff0c;但是当我进行使用的时候&#xff1a; backendProgressData.value xxxx接口返回数据progressData:{percentage:123,text:"文字"} 在template中{{…

解决Docker环境变量的配置的通用方法

我们部署的很多服务都是以Docker容器的形式存在的。 在运行Docker容器前&#xff0c;除了设置网络、数据卷之外&#xff0c;还需要设置各种各样的环境变量。 有时候&#xff0c;由于容器版本的问题&#xff0c;一些文档没有及时更新&#xff0c;可能同时存在多个新旧版本的环…

【腾讯云产品最佳实践】腾讯云CVM入门技术与实践:通过腾讯云快速构建云上应用

目录 前言 什么是腾讯云CVM&#xff1f; 腾讯云CVM的技术优势 基于最佳技术实践&#xff0c;使用腾讯云CVM搭建应用 1. 开通CVM实例 2. 连接CVM实例 3. 配置Web环境 4. 部署PHP应用 腾讯云CVM行业应用案例&#xff1a;电商平台的双十一攻略 1. 弹性伸缩解决高并发问题…

51c嵌入式~IO合集2

我自己的原文哦~ https://blog.51cto.com/whaosoft/11697814 一、STM32串口通信基本原理 通信接口背景知识 设备之间通信的方式 一般情况下&#xff0c;设备之间的通信方式可以分成并行通信和串行通信两种。并行与串行通信的区别如下表所示。 串行通信的分类 1、按照数据传…