数据结构-8.Java. 七大排序算法(上篇)

本篇博客给大家带来的是排序的知识点, 由于时间有限, 分两天来写, 上篇主要实现 前四种排序算法: 直接插入, 希尔, 选择, 堆排。

文章专栏: Java-数据结构

若有问题 评论区见

欢迎大家点赞 评论 收藏 分享

如果你不知道分享给谁,那就分享给薯条.

你们的支持是我不断创作的动力 .

    

目录

    

  王子公主请阅

1.排序的概念及应用

1.1 排序的概念

1.3 常见的排序算法

2. 常见排序算法的实现(默认排升序)

2.1 插入排序

2.1.1基本思想:

2.1.2 直接插入排序

直接插入排序具体操作: 

2.1.3 希尔排序(缩小增量排序)

2.2 选择排序

2.2.1基本思想:

2.2.3 堆排序


  王子公主请阅

1.排序的概念及应用

1.1 排序的概念

排序:所谓排序,就是使一串记录按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性 :假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j] ,且 r[i] r[j] 之前,而在排序后的序列中, r[i] 仍在 r[j] 之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序 :数据元素全部放在内存中的排序。
外部排序 :数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

1.3 常见的排序算法

2. 常见排序算法的实现(默认排升序)

2.1 插入排序

2.1.1基本思想:

直接插入排序是一种简单的插入排序法,其基本思想是:

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到 一个新的有序序列 。实际中我们玩扑克牌时,就用了插入排序的思想。

如下模拟动图: 

2.1.2 直接插入排序

当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,
此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置
array[i]插入,原来位置上的元素顺序后移
如下图: 

直接插入排序具体操作: 

第一步 理清思路:

 当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,

此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置
array[i]插入,原来位置上的元素顺序后移
第二步具体步骤: 

1.   定义 tmp 保存 排序前 i 下标对应的值.  for(i) 为 外循环, for(j) 为  内循环 , j = i -1 .

2.   遍历数组,  在内循环中,  tmp 与  array[ j ] 进行比较,, 若是 tmp 小 则  [ j + 1] = [ j ];

若是 tmp 大 则 直接 break;  

3.    在外循环中  将 最后 j + 1 位置的值 赋为 tmp值 , [ j + 1 ] = tmp;  

第三步  画图理解 , 一目了然 :

第四步  代码实现: 

 /*** 时间复杂度:*            最好情况:数据完全有序的时候 1 2 3 4 5 :O(N)*            最坏情况:数据完全逆序的时候 5 4 3 2 1 :O(N^2)*         结论: 数据越有序,排序越快, *         场景: 现在有一组基本有序的数据,那么用哪个排序好点? - 直接插入排序.* 空间复杂度: O(1)* 稳定性:  稳定的排序*      一个本身就是稳定的排序 是可以实现为不稳定的排序的*      相反 一个本身就不稳定的排序  是不可以实现为稳定的排序的.** @param //直接插入排序*/public static void insertSort(int[] array) {for (int i = 1; i < array.length; i++) {int tmp = array[i];int j = i-1;for (; j >= 0; j--) {if(array[j] > tmp) {  // >= 会变成不稳定的array[j+1] = array[j];}else {//array[j+1] = tmp; 执行了一次break;}}//当j=-1时,a[j+1]=tmp这条语句没被执行,所以再写一次array[j+1] = tmp; //执行了两次, 故把第一次屏蔽.}}

最后总结: 

1. 元素集合越接近有序,直接插入排序算法的时间效率越高
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1),它是一种稳定的排序算法
4. 稳定性:稳定 

2.1.3 希尔排序(缩小增量排序)

希尔排序本质上 就是 在对直接插入排序做优化。

第一步 了解基本思想: 

先选定一个整数 gap ,把待排序文件中所有记录分成多个组,
此处 gap 通常都是 初始化成 gap = array.length/2;
所有 距离为 gap 的记录 在同一组内,并对每一组内的记录进行直接插入排序。
每进行一次直接插入排序 gap /= 2 重复上述分组和排序的工作。当 gap =  时,所有记录在同一组内进行直接插入排序
第二步 画图辅助理解: 
第三步 具体步骤:
具体步骤与 直接插入排序的大体相同, 将 外循环条件换成for (int i = gap; i < array.length; i++),
外循环中 j = i - gap 而不是 - 1;  
同时, 内循环变成for (; j >= 0; j -= gap)
赋值条件变为array[j+gap] = tmp;
最后在直接插入排序外加一层 gap /= 2 的循环 就大功告成了.
第四步  代码实现: 
/*** 希尔排序** 时间复杂度:*        n^1.3 - n^1.5*  空间复杂度: O(1)**  稳定性: 不稳定* @param //shell*/public static void shellSort(int[] array) {int gap = array.length;while(gap > 1) {gap /= 2;shell(array,gap);}//gap /= 2;不用写   因为gap=2或3时, gap/2 = 1.已经进行了直接插入排序.}private static void shell(int[] array,int gap) {for (int i = gap; i < array.length; i++) {int tmp = array[i];int j = i-gap;for (; j >= 0; j -= gap) {if(array[j] > tmp) {array[j+gap] = array[j];}else {break;}}array[j+gap] = tmp;}}

最后 希尔排序的特性总结

1. 希尔排序是对直接插入排序的优化。
2. gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。
3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定:O(n^1.25) ~ O(1.6 * n^1.25)
4. 稳定性:不稳定

2.2 选择排序

2.2.1基本思想:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
如下模拟动图: 
第一步 理清思路:
在元素集合 array[ i ] ~ array[ n-1 ] 中选择关键码最 的数据元素
若它不是这组元素中的 第一个 元素,则将它与这组元素中的最后一个(第一个)元素交换
在剩余的 array[ i ]  ~ array[ n-2 ] array[ i+1 ]  ~  array[ n-1 ] )集合中,重复上述步骤,直到集合剩余 1 个元素
第二步 具体步骤: 
1.  写个双层循环, for( i ) 为 外层循环,  for( j ) 为外层循环, 定义minIndex =  i , j = i + 1;
2.   [minIndex] 与 [ j ] 比较, 当[minIndex] > [ j ] 时  二者交换. 
第三步  代码实现:
/*** 选择排序** 时间复杂度:*      最好: O(N^2)*      最坏: O(N^2)*空间复杂度:O(N)** 稳定性: 不稳定** @param array*/public static void selectSort(int[] array) {for (int i = 0; i < array.length-1; i++) {int minIndex = i;for (int j = i+1; j < array.length; j++) {if(array[j] < array[minIndex]) {minIndex = j;}}swap(array,minIndex,i);}}public static void swap(int[] array,int i,int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}

选择排序有 第二种写法,  反正都要遍历一遍数组, 不如把最大值和最小值都找出来, 最小的往最前放, 最大的往最后放. 

第二种写法步骤:

 1.  定义 left = 0, right = array.length-1, i = left + 1; minIndex = maxIndex = 0;

2.   while( left < right )循环,  i 在循环中, 遍历数组 找到最小元素下标 和 最大元素下标, 出循环 与 minIndex 和 maxIndex 交换.  

3. 出循环后 考虑一个特殊情况 , 当 left = 0 下标 对应的值就是最大值时, 第二步出循环后的交换操作 将最大值交换到minIndex下标处了. 需要 再将 maxIndex 标记到最大值.

第二种写法代码实现:

public static void swap(int[] array,int i,int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}//选择排序的第二种写法.public static void selectSort2(int[] array) {int left = 0;int right = array.length-1;while(left < right) {int minIndex = left;int maxIndex = left;for (int i = left; i <= right; i++) {if(array[i] < array[minIndex]) {minIndex = i;}if(array[i] > array[maxIndex]) {maxIndex = i;}}swap(array,left,minIndex);//有一种情况是maxIndex原本就在left位置上,上面的交换将最大值交换到minIndex下标处了.导致后续的排序不正确.if(maxIndex == left) {maxIndex = minIndex;}swap(array,right,maxIndex);left++;right--;}}

第四步 直接选择排序的特性总结:

1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:不稳定

2.2.3 堆排序

堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
第一步  具体步骤:
1. 排升序, 建大堆 , 向下调整算法 , parent 从 (array.length - 1)/2 开始 减到 1 
2. 将最后一个元素与首元素交换, 除末尾元素外, 其余元素调整成大根堆
3. 定义一个end = array.length - 1; while (end > 0) 循环中进行 2 步骤.
第二步  代码实现: 
 /***堆排序** 时间复杂度:O(N)+O(N*logN) 约等于 O(N*logN)** 如果都以最坏的情况来看,堆排序是目前来说最快的,希尔排序其次.* 假设希尔排序为O(N^1.3) 当N越大时,logN趋于不变所以,堆排序O(N*logN)要快一些.**  空间复杂度:O(1)*  稳定性:不稳定*/public static void heapSort(int[] array) {//建大堆createBigHeap(array);//O(N)int end = array.length-1;//O(N*logN)while(end > 0) {swap(array,0,end);shiftDown(array,0,end);end--;}}private static void createBigHeap(int[] array) {for (int parent = (array.length-1-1)/2; parent >= 0; parent--) {shiftDown(array,parent,array.length);}}private static void shiftDown(int[] array,int parent,int end) {int child = (parent*2)+1;while(child < end) {//保证右子树存在并且当右子树大的时候,child++来到右子树的下标.if(child+1 < end && array[child+1] > array[child]) {child++;}if(array[child] > array[parent]) {swap(array,child,parent);parent = child;child = parent*2+1;}else {//本身就是大根堆break;}}}

第三步   堆排序的特性总结:

1. 堆排序使用堆来选数,效率就高了很多。
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(1)
4. 稳定性:不稳定

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/477038.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法日记 32 day 动态规划(完全背包)

同样是背包问题&#xff0c;但01背包和完全背包是两个类型的问题。 完全背包&#xff1a; 完全背包与01背包的区别在于物品的个数是否是无限的。除此之外&#xff0c;在解决01背包的时候dp的背包遍历的顺利是倒序&#xff0c;为的是保证物品只被添加一次&#xff0c;而完全背包…

数据结构之树与二叉树

华子目录 1.树和二叉树的定义1.1树的定义1.2树的基本术语1.3线性结构和树结构1.4二叉树的定义 2.二叉树的性质和存储结构2.1二叉树的性质2.2二叉树的存储结构2.2.1顺序存储2.2.2链式存储 2.3遍历二叉树2.4大作业&#xff1a;二叉树的基本操作2.4.1代码思路&#xff08;仅供参考…

MYSQL——多表设计以及数据库中三种关系模型

大致介绍数据库中三种关系模型 一对多&#xff08;1:N&#xff09; 定义&#xff1a; 一个实体可以与另一个实体的多个实例相关联&#xff0c;而后者只能与前者的一个实例相关联。 例子&#xff1a; 学生和课程的关系。 学生&#xff08;1&#xff09;&#xff1a;每个学生…

企业网页设计的安全与数据保护

企业网页设计不仅要考虑美观和功能性&#xff0c;安全与数据保护也是重中之重。在这个信息爆炸的时代&#xff0c;用户的数据隐私和安全问题日益凸显&#xff0c;企业必须采取多种措施来保障用户的信息安全。 首先&#xff0c;**SSL加密**是基础中的基础。通过使用SSL证书&…

观察者模式和订阅模式

观察者模式和订阅模式在概念上是相似的&#xff0c;它们都涉及到一个对象&#xff08;通常称为“主题”或“发布者”&#xff09;和多个依赖对象&#xff08;称为“观察者”或“订阅者”&#xff09;之间的关系。然而&#xff0c;尽管它们有相似之处&#xff0c;但在某些方面也…

logback动态获取nacos配置

文章目录 前言一、整体思路二、使用bootstrap.yml三、增加环境变量四、pom文件五、logback-spring.xml更改总结 前言 主要是logback动态获取nacos的配置信息,结尾完整代码 项目springcloudnacosplumelog&#xff0c;使用的时候、特别是部署的时候&#xff0c;需要改环境&#…

工具学习_Docker

0. Docker 简介 Docker 是一个开源平台&#xff0c;旨在帮助开发者构建、运行和交付应用程序。它通过容器化技术将应用程序及其所有依赖项打包在一个标准化的单元&#xff08;即容器&#xff09;中&#xff0c;使得应用程序在任何环境中都能保持一致的运行效果。Docker 提供了…

基础知识学习上

基础知识学习上 1.关于print1.1 format 方法 2.运算符2.1 除法运算2.2 幂运算 3.条件控制语句3.1 if语句3.2 循环语句 4.复杂数据类型4.1列表4.2字典4.3字符串 5.函数 1.关于print 分隔符 print(1, 2, 3, 4, sep-) print(1, 2, 3, 4, sep。)结尾符 print(1, 2, 3, 4, end?) pr…

无监督跨域目标检测的语义一致性知识转移

Semantic consistency knowledge transfer for unsupervised cross domain object detection 无监督跨域目标检测的语义一致性知识转移 作者: Zichong Chen, Ziying Xia, Xiaochen Li, Junhao Shi, Nyima Tashi, Jian Cheng 所属机构: 电子科技大学信息与通信工程学院&…

AI智能稿件排版系统订单管理系统

在现代制造业和服务行业中&#xff0c;高效的生产流程和精确的订单管理是企业保持竞争优势的核心要素。AI智能稿件排版系统和订单管理系统作为一体化解决方案&#xff0c;以其强大的自动化能力和智能化技术&#xff0c;帮助企业实现排版效率提升、数据格式兼容性增强和生产流程…

Android Google登录接入

官方文献&#xff1a; 1、前期准备&#xff1a; https://developers.google.cn/identity/sign-in/android/legacy-start-integrating?hlzh-cnhttps://developers.google.cn/identity/sign-in/android/legacy-start-integrating?hlzh-cn 2、具体开发&#xff1a; 新版 Googl…

论文浅尝 | MindMap:知识图谱提示激发大型语言模型中的思维图(ACL2024)

笔记整理&#xff1a;和东顺&#xff0c;天津大学硕士&#xff0c;研究方向为软件缺陷分析 论文链接&#xff1a;https://aclanthology.org/2024.acl-long.558/ 发表会议&#xff1a;ACL 2024 1. 动机 虽然大语言模型&#xff08;LLMs&#xff09;已经在自然语言理解和生成任务…

Spring Cloud Data Flow快速入门Demo

1.什么是Spring Cloud Data Flow&#xff1f; Spring Cloud Data Flow 是一个用于构建和编排数据处理流水线的云原生框架。它提供了一种简化的方式来定义、部署和管理数据处理任务和流应用程序。以下是一些关键特性和组件&#xff1a; 关键特性 流处理&#xff1a; 支持实时数…

C# .NET环境下调用ONNX格式YOLOV8模型问题总结

我的环境是&#xff1a; Visual Studio: 2019 显卡&#xff1a; 一、遇到问题 1、EntryPointNotFoundException:无法在DLL“onnxruntime”中找到名为“OrtGetApiBase”的入口点。差了下原因&#xff0c;入口点是启动项中的问题。 原因&#xff1a;之前用yolov7时安装的版本在C…

量子感知机

神经网络类似于人类大脑&#xff0c;是模拟生物神经网络进行信息处理的一种数学模型。它能解决分类、回归等问题&#xff0c;是机器学习的重要组成部分。量子神经网络是将量子理论与神经网络相结合而产生的一种新型计算模式。1995年美国路易斯安那州立大学KAK教授首次提出了量子…

AI Large Language Model

AI 的 Large Language model LLM , 大语言模型&#xff1a; 是AI的模型&#xff0c;专门设计用来处理自然语言相关任务。它们通过深度学习和庞大的训练数据集&#xff0c;在理解和生成自然语言文本方面表现出色。常见的 LLM 包括 OpenAI 的 GPT 系列、Google 的 PaLM 和 Meta…

运维团队3D可视化智能机房管理方案

随着信息技术的飞速发展&#xff0c;机房作为信息技术基础设施的核心部分&#xff0c;其管理效率与可视化程度对运维团队的工作质量有着直接影响。本文将介绍一种结合3D可视化技术的机房管理方案&#xff0c;为运维团队提供一种新的视角和工具&#xff0c;以提升机房管理的效率…

CKA认证 | Day2 K8s内部监控与日志

第三章 Kubernetes监控与日志 1、查看集群资源状态 在 Kubernetes 集群中&#xff0c;查看集群资源状态和组件状态是非常重要的操作。以下是一些常用的命令和解释&#xff0c;帮助你更好地管理和监控 Kubernetes 集群。 1.1 查看master组件状态 Kubernetes 的 Master 组件包…

111 - Lecture 10

File I/O and GUI with JavaFX 文件输入/输出与JavaFX图形用户界面 一、Overview 1. File I/O &#xff08;1&#xff09; learning Java File I/O mechanism &#xff08;2&#xff09; writing into and reading from a file 使用文件I/O进行数据读取和…

分享一下arr的意义(c基础)(必看)(牢记)

arr 即数组名 一般指数组首元素地址 在两种情况下不是 1&#xff1a;sizeof&#xff08;arr&#xff09; arr指整个数组简单讲解一下strlen与sizeof&#xff08;c基础&#xff09;_strzeof在c语言中什么意思-CSDN博客 2&#xff1a;printf&#xff08;"%p",&…