AVL树实现

1. AVL的概念

AVL树是最先发明的⾃平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的 左右⼦树都是AV树,且左右⼦树的⾼度差的绝对值不超过1。AVL树是⼀颗⾼度平衡搜索⼆叉树, 通过控制⾼度差去控制平衡。

AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis是两个前苏联的科学家,他们在1962 年的论⽂《An algorithm for the organization of information》中发表了它。

AVL树实现这⾥我们引⼊⼀个平衡因⼦(balance factor)的概念,每个结点都有⼀个平衡因⼦,任何 结点的平衡因⼦等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦等于0/1/-1, AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡, 就像⼀个⻛向标⼀样。 

思考⼀下为什么AVL树是⾼度平衡搜索⼆叉树,要求⾼度差不超过1,⽽不是⾼度差是0呢?0不是更 好的平衡吗?画画图分析我们发现,不是不想这样设计,⽽是有些情况是做不到⾼度差是0的。⽐ 如⼀棵树是2个结点,4个结点等情况下,⾼度差最好就是1,⽆法作为⾼度差是0

AVL树整体结点数量和分布和完全⼆叉树类似,⾼度可以控制在 logN,那么增删查改的效率也可 以控制在O(logN) ,相⽐⼆叉搜索树有了本质的提升

2. AVL树的实现

2.1 AVL树的结构

using namespace std;
template<class  K,class V>
struct AVLTreeNode
{//需要parent指针,后续更新平衡因子可看到pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;AVLTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};
template<class  K, class V>
class AVLTree
{	typedef AVLTreeNode<K, V> Node;
public://...
private:Node* _root = nullptr;
};

和搜索二叉树结构差不多,多了一个_parent和_bf 

2.2 AVL树的插入

2.2.1 AVL树插入⼀个值的大概过程

1. 插⼊⼀个值按⼆叉搜索树规则进⾏插⼊。

2. 新增结点以后,只会影响祖先结点的⾼度,也就是可能会影响部分祖先结点的平衡因⼦,所以更新 从新增结点->根结点路径上的平衡因⼦,实际中最坏情况下要更新到根,有些情况更新到中间就可 以停⽌了,具体情况我们下⾯再详细分析。

3. 更新平衡因⼦过程中没有出现问题,则插⼊结束

4. 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树 的⾼度,不会再影响上⼀层,所以插⼊结束。

2.2.2 平衡因子更新

更新原则:

平衡因⼦ = 右⼦树⾼度-左⼦树⾼度

只有⼦树⾼度变化才会影响当前结点平衡因⼦。

插⼊结点,会增加⾼度,所以新增结点在parent的右⼦树,parent的平衡因⼦++,新增结点在 parent的左⼦树,parent平衡因⼦--

parent所在⼦树的⾼度是否变化决定了是否会继续往上更新

更新停⽌条件

更新后parent的平衡因⼦等于0,更新中parent的平衡因⼦变化为-1->0 或者 1->0,说明更新前 parent⼦树⼀边⾼⼀边低,新增的结点插⼊在低的那边,插⼊后parent所在的⼦树⾼度不变,不会 影响parent的⽗亲结点的平衡因⼦,更新结束。

更新后parent的平衡因⼦等于1 或 -1,更新前更新中parent的平衡因⼦变化为0->1 或者 0->-1,说 明更新前parent⼦树两边⼀样⾼,新增的插⼊结点后,parent所在的⼦树⼀边⾼⼀边低,parent所 在的⼦树符合平衡要求,但是⾼度增加了1,会影响arent的⽗亲结点的平衡因⼦,所以要继续向上 更新。

更新后parent的平衡因⼦等于2 或 -2,更新前更新中parent的平衡因⼦变化为1->2 或者 -1->-2,说 明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,parent所在的⼦树⾼的那边更⾼ 了,破坏了平衡,parent所在的⼦树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把 parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。所以旋转后也不 需要继续往上更新,插⼊结束。

更新到10结点,平衡因⼦为2,10所在的⼦树已经不平衡,需要旋转处理

更新到中间结点,3为根的⼦树⾼度不变,不会影响上⼀层,更新结束

最坏更新到根停⽌

2.2.3 插入结点及更新平衡因⼦的代码实现

bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if(parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}//链接父亲cur->_parent = parent;// 控制平衡while (parent){// 更新平衡因子if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){//更新结束break;}else if (parent->_bf == 1 || parent->_bf == -1){//继续往上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 不平衡了,旋转处理break;}else{assert(false);}}return true;
}

前面的插入和搜索二叉树一样

2.3 旋转

2.3.1 旋转的原则

1. 保持搜索树的规则

2. 让旋转的树从不满⾜变平衡,其次降低旋转树的⾼度

旋转总共分为四种,左单旋/右单旋/左右双旋/右左双旋。

说明:下⾯的图中,有些结点我们给的是具体值,如10和5等结点,这⾥是为了⽅便讲解,实际中是什么值都可以,只要⼤⼩关系符合搜索树的规则即可。

2.3.2 右单旋

本图1展⽰的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要 求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树, 是⼀种概括抽象表⽰,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2/图3/图4/ 图5进⾏了详细描述。

在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平 衡因⼦从-1变成-2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树左边太⾼了,需要 往右边旋转,控制两棵树的平衡。

旋转核⼼步骤,因为5 < b⼦树的值 < 10,将b变成10的左⼦树,10变成5的右⼦树,5变成这棵树新 的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转原 则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。

 

 

2.3.3 右单旋代码实现

//右单旋
void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;//判断b是否为空,如果为空就不能对他进行解引用if (subLR)subLR->_parent = parent;Node* pParent = parent->_parent;subL->_right = parent;parent->_parent = subL;//判断上面是否有节点if (parent == _root){_root = subL;subL->_parent = nullptr;}//上面有节点判断子树在祖父节点的左边还是右边,要让祖先节点指向我们else{if (pParent->_left == parent){pParent->_left = subL;}else{pParent->_right = subL;}subL->_parent = pParent;}//更新平衡因子subL->_bf = 0;parent->_bf = 0;}

2.3.4 左单旋

本图6展⽰的是10为根的树,有a/b/c抽象为三棵⾼度为h的⼦树(h>=0),a/b/c均符合AVL树的要 求。10可能是整棵树的根,也可能是⼀个整棵树中局部的⼦树的根。这⾥a/b/c是⾼度为h的⼦树, 是⼀种概括抽象表⽰,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上⾯左旋类 似。

在a⼦树中插⼊⼀个新结点,导致a⼦树的⾼度从h变成h+1,不断向上更新平衡因⼦,导致10的平 衡因⼦从1变成2,10为根的树左右⾼度差超过1,违反平衡规则。10为根的树右边太⾼了,需要往 左边旋转,控制两棵树的平衡。

旋转核⼼步骤,因为10 < b⼦树的值 < 15,将b变成10的右⼦树,10变成15的左⼦树,15变成这棵 树新的根,符合搜索树的规则,控制了平衡,同时这棵的⾼度恢复到了插⼊之前的h+2,符合旋转 原则。如果插⼊之前10整棵树的⼀个局部⼦树,旋转后不会再影响上⼀层,插⼊结束了。

左单旋和右单旋逻辑类似

2.3.5 左单旋代码实现

//左单旋
void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* pParent = parent->_parent;subR->_left = parent;parent->_parent = subR;if (pParent == nullptr){_root = subR;subR->_parent = nullptr;}else{if (pParent->_left == parent){pParent->_left = subR;}else{pParent->_right = subR;}subR->_parent = pParent;}subR->_bf = 0;parent->_bf = 0;
}

2.3.6 左右双旋

通过图7和图8可以看到,左边⾼时,如果插⼊位置不是在a⼦树,⽽是插⼊在b⼦树,b⼦树⾼度从h变 成h+1,引发旋转,右单旋⽆法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边⾼,但是插⼊在b⼦树中,10为跟的⼦树不再是单纯的左边⾼,对于10是左边⾼,但是对于5是右边 ⾼,需要⽤两次旋转才能解决,以5为旋转点进⾏⼀个左单旋,以10为旋转点进⾏⼀个右单旋,这棵树 这棵树就平衡了。

图7和图8分别为左右双旋中h==0和h==1具体场景分析,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL ⼦树进⾏分析,另外我们需要把b⼦树的细节进⼀步展开为8和左⼦树⾼度为h-1的e和f⼦树,因为 我们要对b的⽗亲5为旋转点进⾏左单旋,左单旋需要动b树中的左⼦树。b⼦树中新增结点的位置 不同,平衡因⼦更新的细节也不同,通过观察8的平衡因⼦不同,这⾥我们要分三个场景讨论。

场景1:h >= 1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1并为h并不断更新8->5->10平衡因⼦, 引发旋转,其中8的平衡因⼦为-1,旋转后8和5平衡因⼦为0,10平衡因⼦为1。

场景2:h >= 1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新8->5->10平衡因⼦,引 发旋转,其中8的平衡因⼦为1,旋转后8和10平衡因⼦为0,5平衡因⼦为-1。

场景3:h == 0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新5->10平衡因⼦,引发旋 转,其中8的平衡因⼦为0,旋转后8和10和5平衡因⼦均为0。

2.3.7 左右双旋代码实现

	//左右双旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == -1){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 1;}else if (bf == 1){subLR->_bf = 0;subL->_bf = -1;parent->_bf = 0;}else if (bf == 0){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else{assert(false);}}

2.3.8 右左双旋

跟左右双旋类似,下⾯我们将a/b/c⼦树抽象为⾼度h的AVL⼦树进⾏分析,另外我们需要把b⼦树的 细节进⼀步展开为12和左⼦树⾼度为h-1的e和f⼦树,因为我们要对b的⽗亲15为旋转点进⾏右单 旋,右单旋需要动b树中的右⼦树。b⼦树中新增结点的位置不同,平衡因⼦更新的细节也不同,通 过观察12的平衡因⼦不同,这⾥我们要分三个场景讨论。

场景1:h >= 1时,新增结点插⼊在e⼦树,e⼦树⾼度从h-1变为h并不断更新12->15->10平衡因 ⼦,引发旋转,其中12的平衡因⼦为-1,旋转后10和12平衡因⼦为0,15平衡因⼦为1。

场景2:h >= 1时,新增结点插⼊在f⼦树,f⼦树⾼度从h-1变为h并不断更新12->15->10平衡因⼦, 引发旋转,其中12的平衡因⼦为1,旋转后15和12平衡因⼦为0,10平衡因⼦为-1。

场景3:h == 0时,a/b/c都是空树,b⾃⼰就是⼀个新增结点,不断更新15->10平衡因⼦,引发旋 转,其中12的平衡因⼦为0,旋转后10和12和15平衡因⼦均为0。

2.3.9 右左双旋代码实现

//右左双旋旋
void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == -1){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 1;}else if (bf == 1){subRL->_bf = 0;parent->_bf = -1;subR->_bf = 0;}else if(bf == 0){subRL->_bf = 0;subR->_bf = 0;parent->_bf = 0;}else{assert(false);}
}

2.4 AVL树的查找

按⼆叉搜索树逻辑实现即可,搜索效率为 O(logN)

Node* Find(const K& key)
{Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;
}

2.5 AVL树平衡检测

我们实现的AVL树是否合格,我们通过检查左右⼦树⾼度差的的程序进⾏反向验证,同时检查⼀下结点的平衡因⼦更新是否出现了问题。

int _Height(Node* root)
{if (root == nullptr){return 0;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool _IsBalanceTree(Node* root)
{//空树也是AVL树if (nullptr == root)return true;//计算pRoot结点的平衡因子:即pRoot左右子树的高度差int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);int diff = rightHeight - leftHeight;// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者// pRoot平衡因子的绝对值超过1,则一定不是AVL树if (abs(diff) >= 2){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != diff){cout << root->_kv.first << "平衡因子异常" << endl;return false;}// pRoot的左和右如果都是AVL树,则该树一定是AVL树return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}

测试代码一: 

// 测试代码
#include <vector>
#include "AVLTree.h"
void TestAVLTree1()
{AVLTree<int, int> t;// 常规的测试用例/*int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };*/// 特殊的带有双旋场景的测试用例int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto e : a){t.Insert({ e, e });}t.InOrder();cout << t.IsBalanceTree() << endl;
}
int main()
{TestAVLTree1();return 0;
}

运行结果一:

运行结果二:

测试代码二:

// 插⼊⼀堆随机值,测试平衡,顺便测试⼀下⾼度和性能等
void TestAVLTree2()
{const int N = 1000000;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(rand() + i);}size_t begin2 = clock();AVLTree<int, int> t;for (auto e : v){t.Insert(make_pair(e, e));}size_t end2 = clock();cout << "Insert:" << end2 - begin2 << endl;cout << t.IsBalanceTree() << endl;cout << "Height:" << t.Height() << endl;cout << "Size:" << t.Size() << endl;size_t begin1 = clock();// 确定在的值for (auto e : v){t.Find(e);}// 随机值/*for (size_t i = 0; i < N; i++){t.Find((rand() + i));}*/size_t end1 = clock();cout << "Find:" << end1 - begin1 << endl;
}
int main()
{TestAVLTree2();return 0;
}

运行结果:

2.6 AVL树的删除

AVL树的删除本章节不做讲解,有兴趣的小编们可以参考:《殷⼈昆 数据结构:⽤⾯向对象⽅法与C++语 ⾔描述》中讲解。

结束语:

AVL树是一种平衡二叉搜索树,通过旋转操作确保树的高度始终保持平衡,从而保证插入、删除和查找操作的时间复杂度始终为 ( O(\log n) )。AVL树在实践中广泛应用于需要高效搜索、插入和删除操作的场景,例如数据库索引、内存管理和缓存系统等。

实现AVL树的关键挑战在于如何高效地处理节点的平衡因子、旋转操作以及树的高度更新。通过适当的旋转(单旋转和双旋转)来保证树的平衡,AVL树能在动态变化的环境中保持良好的性能。

总结来说,AVL树是一种具有高度自平衡特性的二叉搜索树,它能在大多数情况下提供稳定的性能,在许多需要高效数据存储和查询的应用中都有广泛的应用前景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/477329.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jvm发展历程介绍

初始阶段&#xff1a;JDK 1.0 - JDK 1.1 • 经典JVM&#xff1a;这是JVM的早期实现&#xff0c;主要特点是使用解释器&#xff08;Interpreter&#xff09;来逐行解释执行Java字节码。这种方式虽然简单直接&#xff0c;但执行效率相对较低。 • JIT编译器&#xff08;Just-In-T…

准备阶段 Profiler性能分析工具的使用(一)

Unity 性能分析器 (Unity Profiler) 性能分析器记录应用程序性能的多个方面并显示相关信息。使用此信息可以做出有关应用程序中可能需要优化的事项的明智决策&#xff0c;并确认所做的优化是否产生预期结果。 默认情况下&#xff0c;性能分析器记录并保留游戏的最后 300 帧&a…

初学 flutter 环境变量配置

一、jdk&#xff08;jdk11&#xff09; 1&#xff09;配置环境变量 新增&#xff1a;JAVA_HOMEC:\Program Files\Java\jdk-11 //你的jdk目录 在path新增&#xff1a;%JAVA_HOME%\bin2&#xff09;验证是否配置成功&#xff08;cmd运行命令&#xff09; java java -version …

HTML 元素类型介绍

目录 1. 块级元素&#xff08;Block-level Elements&#xff09; 2. 行级元素&#xff08;Inline Elements&#xff09; 3. 行内块级元素&#xff08;Inline-block Elements&#xff09; 4. 表格相关元素 5. 列表相关元素 6. 表单相关元素 示例代码 示例效果 ​编辑 …

高危,Laravel参数注入漏洞安全风险通告

今日&#xff0c;亚信安全CERT监控到安全社区研究人员发布安全通告&#xff0c;披露了Laravel 参数注入漏洞(CVE-2024-52301)。在受影响的版本中&#xff0c;Application.php 文件的 detectEnvironment 函数直接使用了 $_SERVER[argv]&#xff0c;但没有检查运行环境是否为 CLI…

表格数据处理中大语言模型的微调优化策略研究

论文地址 Research on Fine-Tuning Optimization Strategies for Large Language Models in Tabular Data Processing 论文主要内容 这篇论文的主要内容是研究大型语言模型&#xff08;LLMs&#xff09;在处理表格数据时的微调优化策略。具体来说&#xff0c;论文探讨了以下…

如何搭建C++环境--1.下载安装并调试Microsoft Visual Studio Previerw(Windows)

1.首先&#xff0c;打开浏览器 首先&#xff0c;搜索“Microsoft Visual Studio Previerw” 安装 1.运行VisualStudioSetup (1).exe 无脑一直点继续 然后就到 选择需要的语言 我一般python用pycharm Java&#xff0c;HTML用vscode&#xff08;Microsoft Visual Studio cod…

数字化工厂 MES试点方案全解析(二)

生产过程监控与数据采集 在生产线上部署各类传感器、数据采集终端等设备&#xff0c;与 MES 系统相连&#xff0c;实时采集生产数据&#xff0c;如设备运行参数&#xff08;温度、压力、转速等&#xff09;、产品加工数据&#xff08;尺寸、重量、加工时间等&#xff09;、物料…

TCP vs UDP:如何选择适合的网络传输协议?

在网络通信中&#xff0c;TCP&#xff08;Transmission Control Protocol&#xff09;和UDP&#xff08;User Datagram Protocol&#xff09;是两种非常重要的传输层协议。它们各有特点&#xff0c;适用于不同类型的应用场景。本文将详细探讨TCP和UDP协议的结构、优缺点及应用&…

Redis最终篇分布式锁以及数据一致性

在前三篇我们几乎说完了Redis的所有的基础知识以及Redis怎么实现高可用性,那么在这一篇文章中的话我们主要就是说明如果我们使用Redis出现什么问题以及解决方案是什么,这个如果在未来的工作中也有可能会遇到,希望对看这篇博客的人有帮助,话不多说直接开干 一.Hotkey以及BigKey…

docker搭建私有的仓库

docker搭建私有仓库 一、为什么要搭建私有的仓库&#xff1f; 因为在国内&#xff0c;访问&#xff1a;https://hub.docker.com/ 会出现无法访问页面。。。。&#xff08;已经使用了魔法&#xff09; 当然现在也有一些国内的镜像管理网站&#xff0c;比如网易云镜像服务、Dao…

1123--日期类

目录 一 java 1. Date类 2. calendar类 3. 第三代日期类‘ 3.1 常用方法 3.2 格式化操作 一 java 1. Date类 2. calendar类 3. 第三代日期类‘ 3.1 常用方法 3.2 格式化操作

07-Making a Bar Chart with D3.js and SVG

课程链接 Curran的课程&#xff0c;通过 D3.js 的 scaleLinear, max, scaleBand, axisLeft, axisBottom&#xff0c;根据 .csv 文件生成一个横向柱状图。 【注】如果想造csv数据&#xff0c;可以使用通义千问&#xff0c;关于LinearScale与BandScale不懂的地方也可以在通义千…

mysql根据日期查询没有的日期也要显示数据

先查询出日期数据(当前日期往前推12个月) select bb.datefrom (select num : num 1,date_format(adddate(date_sub(date_sub(curdate(),interval 12 month),interval 1 month),interval num month), %Y-%m) as datefrom mysql.help_topic,(select num : 0) as twhere addd…

计算机网络 实验六 组网实验

一、实验目的 通过构造不同的网络拓扑结构图并进行验证&#xff0c;理解分组转发、网络通信及路由选择的原理&#xff0c;理解交换机和路由器在子网划分中的不同作用。 二、实验原理 组网实验是指将多个计算机通过网络连接起来&#xff0c;实现数据的共享和通信。 组网需要考虑…

10-单表查询

SQL语言 sql语言分类 SQL类别主要动作DQL(Data Query Language)SELECT(通常与FROM、WHERE、GROUP BY、HAVING、ORDER BY等组合使用)&#xff0c;用作数据chaxunDMLINSERT、UPDATE和DELETE&#xff0c;用作定义数据库记录(数据)TCLCOMMIT、ROLLBACK、SAVEPOINT、SET TRANSACTI…

深度学习每周学习总结J6(ResNeXt-50 算法实战与解析 - 猴痘识别)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 目录 0. 总结ResNeXt基本介绍 1. 设置GPU2. 导入数据及处理部分3. 划分数据集4. 模型构建部分5. 设置超参数&#xff1a;定义损失函数&…

采用python3.12 +django5.1 结合 RabbitMQ 和发送邮件功能,实现一个简单的告警系统 前后端分离 vue-element

一、开发环境搭建和配置 #mac环境 brew install python3.12 python3.12 --version python3.12 -m pip install --upgrade pip python3.12 -m pip install Django5.1 python3.12 -m django --version #用于检索系统信息和进程管理 python3.12 -m pip install psutil #集成 pika…

【H2O2|全栈】JS进阶知识(八)ES6(4)

目录 前言 开篇语 准备工作 浅拷贝和深拷贝 浅拷贝 概念 常见方法 弊端 案例 深拷贝 概念 常见方法 弊端 逐层拷贝 原型 构造函数 概念 形式 成员 弊端 显式原型和隐式原型 概念 形式 constructor 概念 形式 原型链 概念 形式 结束语 前言 开篇语…

订单日记为“惠采科技”提供全方位的进销存管理支持

感谢温州惠采科技有限责任公司选择使用订单日记&#xff01; 温州惠采科技有限责任公司&#xff0c;成立于2024年&#xff0c;位于浙江省温州市&#xff0c;是一家以从事销售电气辅材为主的企业。 在业务不断壮大的过程中&#xff0c;想使用一种既能提升运营效率又能节省成本…